Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:35:11.221Z Has data issue: false hasContentIssue false

Stress distribution in polycrystalline silicon thin film solar cells on glass measured by micro-Raman spectroscopy

Published online by Cambridge University Press:  01 February 2011

George Sarau
Affiliation:
gsarau@mpi-halle.de, Max-Planck-Institute of Microstructure Physics, Department 2, Weinberg 2, Halle, 06120, Germany, +49 3641 206440, +49 3641 206499
Michael Becker
Affiliation:
mbecker@mpi-halle.mpg.de, Max-Planck-Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
Andreas Berger
Affiliation:
berger@mpi-halle.de, Max-Planck-Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
Jens Schneider
Affiliation:
jenss@CSGSOLAR.COM, CSG Solar AG, Sonnenallee 1-5, Thalheim, 06766, Germany
Silke Christiansen
Affiliation:
sechrist@mpi-halle.de, Max-Planck-Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
Get access

Abstract

Micro-Raman spectroscopy is used to measure stress distributions in 1.5 µm thick polycrystalline silicon thin film solar cells on glass. These measurements are combined with transmission electron microscopy and atomic force microscopy to assign the measured local stresses to the sample's microstructure. Expansion and contraction of the silicon lattice in the layer and the borosilicate glass substrate during the thermal processing of the solar cell as well as quartz beads of µm size that reside on the glass substrate for light-trapping purposes induce internal stresses that locally vary with structural features. While the thermal processing induces an average tensile stress in the silicon layer originating from the thermal mismatch between glass and silicon, the latter results in lateral stress gradients up to 208 ± 12 MPa in the mapped area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Green, M.A., Basore, P.A., Chang, N., Clugston, D., Egan, R., Evans, R., Hogg, D., Jarnason, S., Keevers, M., Lasswell, P., O'Sullivan, J., Schubert, U., Turner, A., Wenham, S.R., and Young, T., Solar Energy 77, 857 (2004).Google Scholar
2. Basore, P.A., 21st European PV Solar Energy Conference, Dresden (2006) pp. 544.Google Scholar
3. Breitenstein, O., Gupta, R., and Schneider, J., J. Appl. Phys. 102, 024511 (2007).Google Scholar
4. Keevers, M. J., Young, T. L., Schubert, U., and Green, M. A., 22nd European Photovoltaic Solar Energy Conference, Milan (2007).Google Scholar
5.www.csgsolar.com.Google Scholar
6. Egan, R. J., Young, T. L., Evans, R., Schubert, U., Keevers, M., Basore, P. A., Wenham, S. R., and Green, M A, 21st European PV Solar Energy Conference, Dresden (2006) pp. 874.Google Scholar
7. Schneider, J. and Evans, R., 21st European PV Solar Energy Conference, Dresden (2006) pp. 1032.Google Scholar
8. Keevers, M. J., Turner, A., Schubert, U., Basore, P. A., and Green, M. A., 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain (2005), pp. 1305.Google Scholar
9. Becker, M., Scheel, H., Christiansen, S., and Strunk, H. P., J. Appl. Phys. 101, 063531 (2007).Google Scholar
10. Schmidt, U., Ibach, W., Müller, J., Weishaupt, K., and Hollricher, O., Vibrational Spectroscopy 42, 93 (2006).Google Scholar
11. Wolf, I. De and Maes, H. E., Microsystem Technologies 5, 13 (1998).Google Scholar
12. Dietrich, B. and Dombrowski, K. F., J. Raman Spectrosc. 30, 893 (1999).Google Scholar
13. Wolf, I. De, Semicond. Sci. Technol. 11, 139 (1996).Google Scholar
14. Okaji, M., Int. J. Thermophys. 9, 1101 (1988).Google Scholar
15. Lengsfeld, P., Nickel, N. H., Genzel, Ch., and Fuhs, W., J. Appl. Phys. 91, 9128 (2002).Google Scholar