Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:33:16.063Z Has data issue: false hasContentIssue false

Stress-Assisted Diffusion of Boron and Arsenic in Silicon

Published online by Cambridge University Press:  21 February 2011

Michael L. Manda
Affiliation:
Duke University, Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27706
M. L. Shepard
Affiliation:
Duke University, Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27706
R. B. Fair
Affiliation:
Duke University, Department of Electrical Engineering, Durham, North Carolina 27706
H. Z. Massoud
Affiliation:
Duke University, Department of Electrical Engineering, Durham, North Carolina 27706
Get access

Abstract

The diffusion of B and As in mechanically strnsed silicon has been investigated for initial implant doses of 1013, 1014, and 1015 cm-2, over a range of annealing temperatures. At stresses near the silicon yield point, no significant enhancement or retardation was observed. This was true even in plastically deformed samples with dislocation densities >1×107 cm-2. The results are consistent with the multiple charge state vacancy model of impurity diffusion in silicon. The B diffusivity appears to agree with the accepted activation energy of 3.59 eV and pre-exponential of 3.17 cm2/sec for intrinsic B diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fair, R. B. in Imurity Doping Processes in Silicon, Wang, F. F. Y., ed. (North Holland Press, Amsterdam, 1981) pp 317442.Google Scholar
2. Jungbluth, E. D. and Chiao, H. C.. J. Electrochem. Soc., 115, 429(1968).10.1149/1.2411241CrossRefGoogle Scholar
3. Gibbon, C. F., Povilonis, E. I., and Ketchow, D. R.. J. Electrochem. Soc., 119, 767(1972).10.1149/1.2404324CrossRefGoogle Scholar
4. Isomae, S.. J. Appl. Phs., 52, 2782, (1981).10.1063/1.329006CrossRefGoogle Scholar
5. Vilms, J. and Kerps, D..J. Appl. Phys., 53, 1536, (1982).10.1063/1.330653CrossRefGoogle Scholar
6. Hora, H.. Appl. Phys. A., 32, 217(1983)/10.1007/BF00820264CrossRefGoogle Scholar
7. Gerward, L.. Phil. Mag. A., 37, 95(1978).10.1080/01418617808239164CrossRefGoogle Scholar
8. Sato, N.. J. Phys. Soc. Japan, 38, 202(1975).10.1143/JPSJ.38.202CrossRefGoogle Scholar
9. Queisser, H. J.. J. Apl. Phys., 32, 1776, (1961).10.1063/1.1728435CrossRefGoogle Scholar
10. Lawrence, J. E.. J Electrochem. Soc., 113, 819(1966).10.1149/1.2424127CrossRefGoogle Scholar
11. Prussin, S.. J. Appi. Phys., 32, 1876, (1961).10.1063/1.1728256CrossRefGoogle Scholar
12. Lawrence, J. E.. J. Appl. Phys., 18, 405(1967).Google Scholar
13. Lawrence, J. E.. Brit. J. Appl. Phys., 18, 405(1967).10.1088/0508-3443/18/4/303CrossRefGoogle Scholar
14. Ghoshtagore, R. N. Phys. Rev. B., 3, 389(1971).10.1103/PhysRevB.3.389CrossRefGoogle Scholar
15. Ghoshtagore, R. N.. Phys. Rev. B., 3, 397(1971).10.1103/PhysRevB.3.397CrossRefGoogle Scholar
16. Ghoshtagore, R. N.. Phys. Rev. B., 2507, 1971).10.1103/PhysRevB.3.2507CrossRefGoogle Scholar
17. Todokoro, Y. and Teramoto, I.. J. Appl. Phys., 49, 3527, (1978).10.1063/1.325210CrossRefGoogle Scholar
18. Krimmel, E. F., Oppolzer, H., Runge, H., and Wondrak, W.. Phys. Stat. Solid A., 66, 565(1981).10.1002/pssa.2210660219CrossRefGoogle Scholar
19. Yonenaga, T. and Sumino, K.. J. Appl. Phys., 56, 2346(1984).10.1063/1.334272CrossRefGoogle Scholar
20. Ehrstein, J. R., Downing, R. G., Stallard, B. R., Simons, D. S., and Fleming, R. F. in Semiconductor Processing, ASTM STP 850, Gupta, D. P., ed. (American Society for Testing and Materials, 1984).Google Scholar
21. Wortman, J. J., Hauser, J. R., and Burger, R. M.. J. Appl. Phys., 35, 2122 (1964).10.1063/1.1702802CrossRefGoogle Scholar