Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T19:44:03.067Z Has data issue: false hasContentIssue false

Strong Photon-Exciton Coupling in the Near-Field Luminescence of Semiconductor Quantum Dots

Published online by Cambridge University Press:  10 February 2011

A. M. Mintairov
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556, USA
A. S. Vlasov
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556, USA
J. L. Merz
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556, USA
O. V. Kovalenkov
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021 St. Petersburg, Russia
J. P. Reynolds
Affiliation:
EE Department, University of Notre Dame, Notre Dame, IN 46556, USA
D. A. Vinokurov
Affiliation:
Ioffe Physico-Technical Institute, RAS, 194021 St. Petersburg, Russia
Get access

Abstract

We present low-temperature near-field scanning optical microscopy (NSOM) measurements of self-organized InP quantum dots (QD) embedded in a GaInP layer. We observed an anomalously strong increase in the emission energy (∼270 meV) of a single QD by changing the tip-to-surface distance over ∼100 nm in the near-field region. The effect indicates the formation of a near-field nanocavity having extremely high photon-exciton mixing and can be interpreted as the observation of the coupled photon-exciton pair

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Pistol, M.-E., Hessman, D., Pryor, C., and Samuelson, L., Proc. of 7th Int. Symp. “Nanostructures: Physics and Technology, St. Petersburg, Russia, 1999, P. 3133.Google Scholar
2 Blome, P. G., Wenderoth, M., Hubner, M., Ulbrich, R. G., Porsche, J., and Scholz, F., Phys. Rev. B, 61, 8382 (2000).Google Scholar
3 Pryor, C., Pistol, M-E., and Samuelson, L., Phys. Rev. B, 56, 10404 (1997)Google Scholar
4 Guttroff, G., Bayer, M., Forchel, A., Kazantsev, D. V., Zundel, M. K. and Erbel, K., Phys. Stat. Sol. (a) 164, 291 (1997)Google Scholar
5 Dekel, E., Gershoni, D., Ehrenfreud, E., Spector, D., Garcia, J. M., and Petroff, P. M., Phys. Rev. Lett. 80, 4991 (1998).Google Scholar
6 Royo, P., Stanley, R. P., Houdre, R., Ilegems, M., Moser, M., Hovel, R., Schweizer, H. P. and Gulden, K. H., Appl. Phys. Lett. 75, 4052 (1999)Google Scholar
7 Larson, C. and Harris, J. S. Jr, Appl. Phys. Lett. 68, 891 (1996).Google Scholar
8 Flack, F., Saamarth, N., Nikitin, V., Crowell, P. A., Shi, J., Levy, J. and Awschalom, D. D., Phys. Rev. B, 54, R17312 (1996)Google Scholar
9 Chavez-Pirson, A. et al. , Appl. Phys. Lett. 72, 3495 (1998)Google Scholar
10 Robinson, H. D., and Goldberg, B. B., Phys. Rev. B, 61, R5086 (2000)Google Scholar
11 Otsu, M. in Near-Field Nano/Atom Optics and Technology, Springer, Tokyo, 1998 p. 172.Google Scholar
12 Matsuda, K., Saiki, T., Saito, H., and Nishi, K., Appl. Phys. Lett., 76, 73 (2000).Google Scholar
13 Toda, Y., Moriwaki, O., Nishioka, M., and Arakawa, Y., Phys. Rev. Lett. 82, 4114 (1999)Google Scholar
14 Mintairov, A. M. et al. , Proc. of 7th Int. Symp. “Nanostructures: Physics and Technology, St. Petersburg, Russia, 1999, P. 525528.Google Scholar
15 Confined Excitons and Photons: New Physics and Devices, edited by Burstein, E. and Weisbuch, C. (Plenum, New York, 1995).Google Scholar