No CrossRef data available.
Published online by Cambridge University Press: 11 February 2011
For ohmic contact on p GaN, palladium is one of the best candidates showing ohmic characteristics already without annealing. To be realized in devices, it is necessary to know the behavior of the ohmic contacts at accelerated conditions, especially for high temperatures and power. We report on the structural evolution of palladium layers (30 nm) deposited on GaN (0001) by electron beam evaporation without intentional annealing. They were next cut into various pieces which were individually submitted to rapid thermal annealing at 400, 500, 600, 700 and 800°C for 10 sec. We investigate the differences in the microstructure and the location of interfacial phases and their relationships as determined by X-ray diffraction and transmission electron microscopy, we then suggest the formation mechanism based on the relationship. It is shown that the interface is disrupted at annealing above 600°C and by 800°C only very small patches of Pd are still present, however they area completely imbedded in a matrix of intermetallic phases (gallides) formed by the reaction with GaN.