Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T14:29:41.865Z Has data issue: false hasContentIssue false

Structural and Magnetic States in Layered Manganites: An Expanding View of the Phase Diagram

Published online by Cambridge University Press:  10 February 2011

J.F. Mitchell
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
J.E. Millburn
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
C. Ling
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
D.N. Argyriou
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, IL 60439
H. N. Bordallo
Affiliation:
Intense Pulsed Neutron Source, Argonne National Laboratory, Argonne, IL 60439
Get access

Abstract

Colossal magnetoresistive (CMR) manganites display a spectacular range of structural, magnetic, and electronic phases as a function of hole concentration, temperature, magnetic field, etc. Although the bulk of research has concentrated on the 3-D perovskite manganites, the ability to study anisotropic magnetic and electronic interactions made available in reduced dimensions has accelerated interest in the layered Ruddlesden-Popper (R-P) phases of the manganite class. The quest for understanding the coupling among lattice, spin, and electronic degrees of freedom (and dimensionality) is driven by the availability of high quality materials. In this talk, we will present recent results on synthesis and magnetic properties of layered manganites from the La2−2xSr1+2xMn2O7 series in the Mn4+-rich regime x > 0.5. This region of the composition diagram is populated by antiferromagnetic structures that evolve from the A-type layered order to G-type “rocksalt” order as x increases. Between these two regimes is a wide region (0.7 < x < 0.9) where an incommensurate magnetic structure is observed. The IC structure joins spin canting and phase separation as a mode for mixed-valent manganites to accommodate FM/AF competition. Transport in these materials is dominated by highly insulating behavior, although a region close to x = 0.5 exhibits metal-nonmetal transitions and an extreme sensitivity to oxygen content. We suggest two possible explanations for this transport behavior at doping just above x=0.5: localization by oxygen defects or charge ordering of Mn3+/Mn4+ sites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moritomo, Y., Asamitsu, A., Kuwahara, H. and Tokura, Y. Nature 380, 141 (1996).Google Scholar
2. Vasiliu-Doloc, L., Rosenkranz, S., Osborn, R., Sinha, S. K., Lynn, J. W., Mesot, J., Seeck, O. H., Preosti, G., Fedro, A. J. and Mitchell, J. F. Phys. Rev. Lett. 83, 4393 (1999).Google Scholar
3 Rosenkranz, S., Osborn, R., Mitchell, J.F., Vasiliu-Doloc, L., Lynn, J., Sinha, S.K., Argyriou, D.N. J. Appl. Phys. 83, 7348 (1998).Google Scholar
4. Seshadri, R., Martin, c., Hervieu, M., Raveau, B., and Rao, C.N.R. Chem. Mater. 73, 1097 (1997).Google Scholar
5. Medarde, M., Mitchell, J. F., Millburn, J. E., Short, S. and Jorgensen, J. D. Phys. Rev. Lett. 83, 1223 (1999).Google Scholar
6. Hirota, K., Moritomo, Y., Fujioka, H., Kubota, M., Yoshizawa, H. and Endoh, Y. J. Phys. Soc. Jpn. 67, 3380 (1998).Google Scholar
7. Argyriou, D.N., Mitchell, J.F., Radaelli, P.G., Bordallo, H. N., Cox, D.E., Medarde, M. and Jorgensen, J.D. Phys. Rev. B 59, 8695 (1999).Google Scholar
8. Battle, P.D., Cox, D.E., Green, M.A., Millburn, J.E., Spring, L.E., Radaelli, P.G., Rosseinsky, M.J. and Vente, J.F. Chem. Mater. 9, 1042 (1997).Google Scholar
9. Mitchell, J.F., Millburn, J.E., Medarde, M., Short, S., Jorgensen, J.D. and Femdndez-Diaz, M.T. J. Solid State Chem. 141, 599 (1998).Google Scholar
10. Mitchell, J.F., Millburn, J.E., Medarde, M., Argyriou, D.N. and Jorgensen, J.D. J. Appl. Phys. 85, 4352 (1999).Google Scholar
11. Larson, A.C. and Dreele, R.B. Von, General Structural Analysis System, Los Alamos Internal Report No. 86–748, 1990.Google Scholar
12. Mitzutani, N., Kitazawa, A., Nobuyuki, O. and Kato, M. J. Chem. Soc. (Jpn.) Ind. Ed. 73, 1097 (1970).Google Scholar
13. Itoh, M., Shikano, M., Kawaji, H. and Nakamura, T. Solid State Comm. 80, 545 (1991).Google Scholar
14. Dann, S.E., Weller, M.T. and Currie, D.B. J. Solid State Chem. 97, 179 (1992).Google Scholar
15. Takeda, T. and Ohara, S. J. Phys. Soc. Jpn. 37, 275 (1974).Google Scholar
16. Kubota, M., Yoshizawa, H., Moritomo, Y., Fujioka, H., Hirota, K., Endoh, Y. J. Phys. Soc. Jpn 68, 2202 (1999).Google Scholar
17. Kubota, M., Fujioka, H., Ohoyama, K., Hirota, K., Moritomo, Y., Yoshizawa, H. and Endoh, Y. J. Phys. Chem. Solids 60, 11261 (1999).Google Scholar
18. Maezono, R. and Nagaosa, N. cond-matt/9904427 (1999).Google Scholar
19. Goodenough, J.B., Magnetism and the Chemical Bond (Interscience Publishers, New York, 1963).Google Scholar
20. DeGennes, P.G., Phys. Rev. 118, 141 (1960)Google Scholar
21. Ramirez, A.P., Schiffer, P., Cheong, S-W., Chen, C.H., Bao, W., Palstra, T.T.M., Gammel, P. L., Bishop, D.J. and Zegarski, B. Phys. Rev. Lett. 76, 3188 (1996).Google Scholar
22. Li, J.Q., Matsui, Y., Kimura, T. and Tokura, Y. Phys. Rev. B 57, R3205 (1998).Google Scholar
23. Roy, M., Mitchell, J.F., Ramirez, A., Schiffer, P. J. Phys.: Cond. Matt. 11, 4843 (1999).Google Scholar
24. The discontinuity in the x=0.64 curve is an experimental artifact.Google Scholar
25. Argyriou, D.N., private communication.Google Scholar