Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T18:47:52.465Z Has data issue: false hasContentIssue false

Structural Nanocomposite Bonding Reinforced by Graphite Nanofibers with Surface Treatments

Published online by Cambridge University Press:  01 February 2011

L. Roy Xu
Affiliation:
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, USA
Charles M. Lukehart
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
Lang Li
Affiliation:
Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA
Sreeparna Sengupta
Affiliation:
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, USA
Ping Wang
Affiliation:
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37235, USA
Get access

Abstract

Graphitic carbon nanofibers were used to reinforce epoxy resin to form nanocomposite adhesive bonding. GCNFs having a herringbone atomic structure are surface-derivatized with bifunctional hexanediamine linker molecules capable of covalent binding to an epoxy matrix during thermal curing and are cut to smaller dimension using ultrasonication. Good dispersion and polymer wetting of the GCNF component is evident on the nanoscale. Tensile and shear joint strength measurements were conducted for metal-metal and polymer-polymer joints using pure epoxy and nanocomposite bonding. Very little bonding strength increase, or some bonding strength decrease, was measured.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Treacy, M. M. J., Ebbesen, T. W. and Gibson, T. M., Nature 381, 678 (1996).Google Scholar
2. Lau, K. T. and Hui, D., Composites Part B 33, 263 (2002).Google Scholar
3. Qian, D., Wagner, G. J., Liu, W. K., Min-Feng, Y. and Ruoff, R. S., Appl. Mech. Rev. 55, 495 (2002).Google Scholar
4. Luo, J. J. and Daniel, I. M., Comp. Sci. Tech. 63, 1607 (2003).Google Scholar
5. Wagner, H. D., Lourie, O., Feldman, Y. and Tenne, R., App. Phys. Lett. 72, 188 (1998).Google Scholar
6. Qian, D., Dickey, E. C., Andrews, R. and Rantell, T., Appl. Phys. Lett., 76, 2868 (2000).Google Scholar
7. Yu, M. F., Lourie, O., Dyer, M., Moloni, K., Kelly, T., Ruoff, R. S., Science 287, 637 (2000).Google Scholar
8. Kim, J. Y., Yu, L. and Hahn, T., T. (2003). Proceedings of the International Conference on Composite Materials (ICCM-14).Google Scholar
9. Schadler, L. S., Giannaris, S. C. and Ajayan, P. M., Appl. Phys. Lett. 73, 3842 (1998).Google Scholar
10. Zerda, A. S. and Lesser, A. J., J. Poly. Sci. Part B: Poly. Phys. 39, 1137 (2001).Google Scholar
11. Bucknall, C. B., Karpodinis, A. and Zhang, X. C., J. Mat. Sci. 29, 3377 (1994).Google Scholar
12. Odegard, G. M., Gates, T. S., Wise, K. E., Park, C. and Siochi, E. J. (2003), Comp. Sci. Tech. 63, 1671 (2003).Google Scholar
13. Ajayan, P. M., Schadler, L. S., Giannaris, C. and Rubio, A., Adv. Mat. 12, 750 (2000).Google Scholar
14. Frankland, S. J. V., Harik, V. M., Odegard, G. M., Brenner, D. W. and Gates, T. S., Comp. Sci. Tech. 63, 1655 (2003).Google Scholar
15. Xu, L. R., Bhamidipati, V., Zhong, W.-H., Li, J., Lukehart, C. M., Lara-Curzio, E., Liu, K. C. and Lance, M. J., J. Comp. Mat. 38, 1563 (2004).Google Scholar
16. Bogy, D. B., J. App. Mech. 38, 377 (1971).Google Scholar
17. Sun, C. T. and Wu, J. K., J. Reinf. Plast. Comp. 3, 130 (1983).Google Scholar
18. Gibson, R. F., in Principles of Composite Material Mechanics (McGraw-Hill, Inc., New York, 1994).Google Scholar
19. Xu, L. R., Sengupta, S. and Kuai, H., Int. J. Adh. Adh. 24, 455 (2004).Google Scholar
20. Xu, L. R. and Sengupta, S., J. Nanosci. Nanotech. (2004) (in press).Google Scholar