Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-15T09:40:18.562Z Has data issue: false hasContentIssue false

Structure and Giant Magneto-Resistive Properties of Co and CoFe nano-particles in a Au matrix

Published online by Cambridge University Press:  21 March 2011

B. J. Kooi
Affiliation:
Department of Applied Physics, Materials Science Center and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
T. Vystavel
Affiliation:
Department of Applied Physics, Materials Science Center and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
J. Th. M. De Hosson
Affiliation:
Department of Applied Physics, Materials Science Center and the Netherlands Institute for Metals Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Get access

Abstract

This paper focuses on the relation between the microstructure and the Giant Magneto-Resistive (GMR) properties of Au80Co20 and Au80Co10Fe10 granular alloys. After annealing of quenched samples large differences in structure of Co and CoFe nano-particles arise: e.g. fcc Co versus bcc CoFe, spinodal decomposition of Co versus nucleation and growth of FeCo, truncated octahedrons for Co and plates for CoFe. Particularly the shape of the precipitates and the state of coherency at the interface between magnetic particle and non-magnetic matrix turned out to have important influences on the GMR behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baibich, M. N., Broto, J. M., Fert, A., Nguyen van Dau, F., Petroff, F.. Etienne, P., Creuzet, G., Friedrich, A., Chazelas, J., Phys. Rev. Lett. 61, 2472 (1988).Google Scholar
2. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hütten, A., Thomas, G., Phys. Rev. Lett. 68, 3745 (1992).Google Scholar
3. Xiao, J. Q., Jiang, J. S., Chien, C. L., Phys. Rev. Lett. 68, 3749 (1992).Google Scholar
4. Vrenken, H., Kooi, B. J., De Hosson, J. Th. M, J. Appl. Phys. 89, 3381 (2001);Google Scholar
Kooi, B. J., Vystavel, T., De Hosson, J. Th. M, J. Nanosci. Nanotechnol. 1, accepted (2001).Google Scholar
5. Hütten, A., Bernardi, J., Friedrichs, S., Thomas, G., Scripta Metall. 33, 1647 (1995).Google Scholar
6. Zhang, S., Levy, P. M., J. Appl. Phys. 73, 5314 (1993).Google Scholar
7. Kataoka, N., Takeda, H., Echigoya, J., Fukamichi, K., Aoyagi, E., Shimada, Y., Okuda, H., Osamura, K., Furusaka, M. and Goto, T., J. Magn. Magn. Mater. 140–144, 621 (1995).Google Scholar
8. Gregg, J. F., Thompson, S. M., Dawson, S. J., Ounadjela, K., Staddon, C. R., Hammon, J., Fermon, C., Saux, G., O'Grady, K., Phys. Rev. B49, 1064 (1994).Google Scholar
9. Allia, P., Knobel, M., Tiberto, P., Vinai, F., Phys. Rev. B52, 15398 (1995).Google Scholar
10. Wiser, N., J. Magn. Magn. Mater. 159, 119124 (1996).Google Scholar
11. Musa, S. O., Howson, M. A., Hickey, B. J. and Wiser, N., J. Magn. Magn. Mater. 148, 309 (1995).Google Scholar