Published online by Cambridge University Press: 15 February 2011
Copper-refractory metal composites/alloys are of interest for aerospace and related applications requiring good thermal conductivity and high strength at elevated temperatures[1]. These materials, due to generally very low mutual solubilities, may allow high strength microstructures to be developed which are stable at temperatures exceeding those suitable for precipitation strengthened alloys. Phase stability and mechanical property characteristics of bulk fabricated Cu-refractory metal composites were recently reviewed[2-3]. This paper reports the results of structure-property studies of a series of Cu1–xTax alloys created by RF sputter deposition. It will be shown that nanoscale face-centered-cubic and body-centered-cubic Ta particles form in the Cu matrix and that these Ta particles are very resistant to coarsening at temperatures up to 900ºC. Nanoindentation studies of these alloys reveal that their strengths are also essentially unaffected by exposure to 900ºC for times up to 100 hours.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.