Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T09:33:38.607Z Has data issue: false hasContentIssue false

Studies of Surface Composition and Phase Transition of Mo-5%Re(1O0)

Published online by Cambridge University Press:  25 February 2011

G. -C. Wang
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 Louisiana State University, Baton Rouge, Louisiana 70803
D. M. Zehner
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
H. C. Eaton
Affiliation:
Louisiana State University, Baton Rouge, Louisiana 70803
Get access

Abstract

Surface composition of a clean Mo-5%Re(100) alloy was determined quantitatively by Auger Electron Spectroscopy and X-Ray Photoelectron Spectroscopy. A slight enrichment of Re on the alloy surface was found at and below room temperatures and the result is consistent with the prediction by a graphical approach for segregation. The change of surface composition due to gas contamination and sputtering were also studied. In contrast to the pure Mo(100) surface where a structural phase transition occurs below room temperature, low energy electron diffraction showed no structural change down to 160 K. However, for H, CO, N chemisorptions and C segregation on the alloy surface, LEED patterns similar to the ones observed from a pure Mo(100) surface were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Debe, M.K. and King, D.A., Phys. Rev. Lett. 39, 708 (1977).CrossRefGoogle Scholar
2 Felter, T.E., Brker, R.A. and Estrup, P.J., Phys. Rev. Lett. 38, 1138 (1977).Google Scholar
3 Melmed, A.J., Tung, R.T., Graham, W.R. and Smith, G.D.W., Phys. Rev. Lett. 43, 1521 (1979).Google Scholar
4 Tosatti, E., Solid State Commun. 25, 881 (1978).Google Scholar
5 Fasolino, A., Santoro, G. and Tosatti, E., Phys. Rev. Lett. 44, 1684 (1980).CrossRefGoogle Scholar
6 Inglesfield, J.E., J. Phys. C11, (1978) L69; 12, 149 (1979).Google Scholar
7 Krakauer, H., Posternak, M. and Freeman, A.J., Phys. Rev. Lett. 43, 1885 (1979).Google Scholar
8 Terakura, I., Terakura, K. and Hamada, N., Surf. Sci. 103, 103 (1981); K. Terakura, I. Terakura and Y. Toraoka, Surf. Sci. 86, 535 (1979).Google Scholar
9 Campuzano, J.C., King, D.A., Somerton, C. and Inglesfield, J.E., Phys. Rev. Lett. 45, 1649 (1980).CrossRefGoogle Scholar
10 Ho-mes, M.I. and Gustafsson, T., Phys. Rev. Lett. 47, 443 (1981).Google Scholar
11 Griffiths, K. and King, D.A., J. Phys. C: 12, L755 (1979).Google Scholar
12 Grimley, T.B. and Torrini, M., J. Phys. Chem. 6, 868 (1973).Google Scholar
13 Einstein, T.L. and Schrieffer, J.R., phys. Rev. B7, 3629 (1973).Google Scholar
14 The MoRe single crystal was grown by the crystal growth group in the Solid State Division, Oak Ridge National Laboratory.Google Scholar
15 Smith, H.G., Wakabayashi, N. and Mostoller, Mark, in Superconductivity in dand f-band Metals, ed. by Douglass, D.H. (Plenum Publishing Corporation, New York, 1976).Google Scholar
16 Sandstrom, D.R. and Withrow, S.P., J. Vac. Sci. Tecnol. 14, 748 (1977).Google Scholar
17 Stair, P.C. (private communication).Google Scholar
18 Handbook of Auger Spectroscopy, Physical Electronic Division, Perkin-Elmer Corporation (1978).Google Scholar
19 Hall, P.M. and Morabito, J.M., Surf. Sci. 83, 391 (1979).Google Scholar
20 We thank Drs. Hall and Morabito for providing us the correction factors for Mo and Re.Google Scholar
21 Handbook of X-Ray Photoelectron Spectroscopy, ed. by Muilenberg, G.E., Physical Electronics Division, Perkin Elmer Corporation (1979).Google Scholar
22 Guillot, C., Riwan, R. and Lecante, J., Surf. Sci. 59, 581 (1976).CrossRefGoogle Scholar
23 Ko, E.I. and Madix, R.J., Surf. Sci. 109, 221 (1981).Google Scholar
24 Lecante, J., Riwan, R. and Guillot, C., Surf. Sci. 35, 271 (1973).Google Scholar
25 Semancik, S. and Estrup, P.J., J. Vac. Sci. Technol. 18, 541 (1981); P.J. Estrup, J. Vac. Sci. Technol. 16, 635 (1979).Google Scholar
26 Prybyla, J.A. and Estrup, P.J., J. Vac. Sci. Technol., to be published.Google Scholar
27 Hamilton, J.C., Phys. Rev. Lett. 42, 989 (1979).Google Scholar
28 Miedema, A.R., Metallkd, Z.. 69, 455 (1978); , A.R. Miedema, Philips Tech. Rev. 36, 217 (1976).Google Scholar
29 Boom, R., deBoer, F.R., and Miedema, A.R., J. Less-Common Met. 46, 271 (1976).Google Scholar
30 Bernasek, S.L. and Staudt, G.E., J. Catalysis 45, 372 (1976).Google Scholar
31 Szymerska, I. and Lipski, M., J. Catalysis 41, 197 (1976); 45, 375 (1976).Google Scholar
32 Kelly, Roger, Surf. Sci. 100, 85 (1980); Foger Kelly, in Proceedings of the Symposium on Sputtering, 1980, ed. by P. Varga, G. Betz and F. P. Viehbock, Institut fur Allgemeine Physik, Technische Universitat Wien, Karlsplatz 13, A–1040 Wien, Austria, p. 390.Google Scholar
33 Anderson, H.H. and Bay, H.L., in Sputtering by Particle Bombardment I, ed. by Behrisch, R. (Springer-Verlag, Berlin, New York, 1981) p. 145.CrossRefGoogle Scholar
34 Betz, G., Surf. Sci. 92, 283 (1980) G. Betz and G.K. Wehner, in Sputtering by particle Bombardment II, ed. by R. Behrisch (Springer-Verlag, Berlin, New York, 1983), p. 11.Google Scholar
35 Kittel, C., in Introduction to Solid State Physics, 3rd edition, (John Wiley and Sons, New York 1968), p. 78.Google Scholar
36 Blakely, J.M., in Chemistry and Physics of Solid Surfaces, Vol. II, ed. by Vanselow, Rolf, (CRC Press, Inc., Boca Raton, Florida 1976), p. 233.Google Scholar
37 Barker, R.A., Semancik, S. and Estrup, P.J., Surf. Sci. 94, L162 (1980).Google Scholar