No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The intermetallic compound RuAl2 with Nowotny chimney-ladder structure is synthesized using arc melting technique. The electrical resistity and thermo electric power measurements were carried out in the temperature range 300–1000K. The resistivity increases with increasing temperature and reaches a maximum value at about 700K. Thermo electric power (TEP) of the sample is negative and the value is about -80 µV/K at RT. The value increases with increasing temperature reaching a maximum value of -140 µV/K at about 600K. The compound exhibits temperature independent power factor in the temperature range 300–550K The calculated figure of merit 1.3 × K-1 is comparable to 7 × 10-4 K-1 of Si-Ge alloys which are used as high temperature thermoelectric materials.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.