Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T08:39:57.106Z Has data issue: false hasContentIssue false

A Study of Austempered Ductile Cast Iron

Published online by Cambridge University Press:  21 February 2011

J. D. Verhoeven
Affiliation:
Dept. MSE and Ames Laboratory, Iowa State University, Ames, Iowa, 50011, USA
A. El Nagar
Affiliation:
Dept. Met., Military Techn. College, Cairo, Egypt
B. El Sarnagawa
Affiliation:
Dept. Met., Military Techn. College, Cairo, Egypt
D. P. Cornwell
Affiliation:
Dept. MSE and Ames Laboratory, Iowa State University, Ames, Iowa, 50011, USA
F. Laabs
Affiliation:
Dept. MSE and Ames Laboratory, Iowa State University, Ames, Iowa, 50011, USA
Get access

Abstract

Experiments were carried out on unalloyed ductile cast iron to evaluate the % retained austenite (%RY) and its lattice parameter as a function of austenitizing time and temperature for austempering temperatures ranging from 270 to 420°C. Results are related to expected carbon levels in the gamma iron matrix at the austenitizing temperature. It is shown that the rate of austenitization can be described as a two step process and experiments demonstrate that 900°C austenitizatlon is complete after 8m. An 1100°C homogenizatdon has been shown to have a small effect upon %RY and rate of austenitization.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chandler, H. E., Met. Prog. 121, 23 (June 82).Google Scholar
2. Rossi, F. S. and Gupta, B. K., Met. Prog. 120, 25 (April 81).Google Scholar
3. Dodd, J., Modern Casting 68, 68 (May 1978).Google Scholar
4. Janowak, J. F., Gundlach, R. B., AFS Trans. 91, 377 (1983).Google Scholar
5. Johansson, M., AFS Trans. 85, 117 (1977).Google Scholar
6. Dorazil, E., Barta, B., Munsterova, E., Stransky, L. and Huver, A., AFS Intern. Cast. Met. J. 7, 52 (June 1982).Google Scholar
7. Roe, R., Cummins Report #0741–82082, pages 3 and 5, Columbus Indiana (1982).Google Scholar
8. Jatczak, C. F., Larson, J. A. and Shin, S. W., Society Automotive Engineering Report, SP–453 (1980).Google Scholar
9. Dickson, M. J., J. Appl. Cryst. 2, 176 (1969).10.1107/S0021889869006881CrossRefGoogle Scholar
10. Wada, T., Wada, H., Elliott, J. F. and Chipman, J., Met. Trans. 3, 1657 (1972).10.1007/BF02643059CrossRefGoogle Scholar
11. Dorazil, E., Sbornik Vysokeho Uceni Technickeho V Brne, pp. 4381, Rocnik 1979, cislo 1–4, and Slevarenstvi 18, 503 (1970).Google Scholar
12. Sohnchen, E. and Piwowarsky, E., Arch. Eisenhutt. 5, 111 (1931).Google Scholar
13. Schissler, J. M. and Metauer, G., C. R. Acad. Sci., Series C 270, 1162 (1970).Google Scholar
14. Pickering, F. B.: in Transformation and Hardenability in Steels (Climax Molybdenum Co., 1967) pp. 109129.Google Scholar
15. Agren, J., Report No. TRITA-MAC-0125, Materials Center, Roy. Inst. Tech., Stockholm, October 1977.Google Scholar
16. Dorazil, E. and Munsterova, C., Prakt. Metallogr. 114, 201 (1977) and Kovove. Mater. 16, 110 (1978).CrossRefGoogle Scholar
17. Fridberg, J., Torndahl, L-E., and Hillert, M., Jernkont. Ann. 153, 263 (1969).Google Scholar