Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T12:06:32.382Z Has data issue: false hasContentIssue false

STUDY OF CO-ASSEMBLED CONDUCTING POLYMERS FOR ENHANCED ETHANOL ELECTRO-OXIDATION REACTION

Published online by Cambridge University Press:  18 May 2012

Le Q. Hoa
Affiliation:
Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Hiroyuki Yoshikawa
Affiliation:
Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Masato Saito
Affiliation:
Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Eiichi Tamiya
Affiliation:
Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Get access

Abstract

Herein, we investigated the effects of polyaniline (PANI) and polypyrrole (PPY) in their native and co-assembled forms as a thin layer on Pt nanoparticle-decorated multi-walled carbon nanotubes (Pt/MWCNTs) toward the ethanol oxidation reaction (EOR). The co-assembled conducting PANI-PPY deposited Pt/MWCNTs was successfully synthesized and demonstrated significant enhancement of the electro-catalytic activity and stability toward EOR as revealed by electrochemical characterizations. The presented results indicate that in the co-assembled form, PANI and PPY retained their own superior effects on the enhancement of stability and catalytic activity via intermediate species removal and ethanol adsorption, respectively. This preliminary result reveals a new strategy for the use of conducting polymers as potential catalyst supports due to its facile fabrication and functionalization, cost effectiveness and environmental friendliness in comparison to alloys and metal oxides, factors which are necessary for the practical application of direct ethanol fuel cells in the near future.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lamy, C., Rousseau, S., Belgsir, E. M., Coutanceau, C. and Léger, J. -M., Electrochim. Acta 49, 3906 (2004).Google Scholar
2. Lamy, C., Lima, A., Rhun, V. L., Delime, F., Coutanceau, C. and Léger, J. -M., J. Power Sources 105, 285 (2002).Google Scholar
3. Yang, L., Kinoshita, S., Yamada, T., Kanka, S., Kitagawa, H., Tokunaga, M., Ishimoto, T., Ogura, T., Nagumo, R., Miyamoto, A. and Koyama, M., Angew. Chem. Int. Ed. 49, 5348 (2010).Google Scholar
4. Cao, L., Sun, G., Li, H. and Xin, Q., Electrochem. Commun. 9, 2541 (2007).Google Scholar
5. Iwasita, T. and Pastor, E., Electrochim. Acta 13, 534 (1994).Google Scholar
6. Kowal, A., Li, M., Shao, M., Sasaki, K., Vukmirovic, M. B., Zhang, J., Marinkovic, N.S., Liu, P., Frenkel, A. I. and Adzic, R. R., Nat. Mater. 8, 328 (2009).Google Scholar
7. Kowal, A., Gojkovic, S. Lj., Lee, K. S., Olszewski, P. and Sung, Y. E., Electrochem. Commun. 11, 724 (2009).Google Scholar
8. Pandey, R. K. and Lakshminarayanan, V., J. Phys. Chem. C 113, 21596 (2009).Google Scholar
9. Pandey, R. K. and Lakshminarayanan, V., J. Phys. Chem. C 114, 8511 (2010).Google Scholar
10. Biallozor, S., Kupniewska, A. and Jasulaitene, V., Fuel Cells 3, 8 (2003).Google Scholar
11. Jian, X. -H., Tsai, D. -S., Chung, W. -H., Huang, Y. -S. and Liu, F. -J., J. Mater. Chem. 19, 1606 (2009).Google Scholar
12. Hwang, S. J., Yoo, S. J.. Jeon, T. -Y., Lee, K. -S., Lim, T. -H., Sung, Y. -E. and Kim, S. -K., Chem. Comm. 46, 8401 (2010).Google Scholar
13. Watanabe, M. and Moto, S., J. Electroanal. Chem. 60, 267 (1975).Google Scholar
14. Okuzaki, H., Kondo, T. and Kunugi, T., Polymer 40, 997 (1999).Google Scholar
15. Cheung, W., Chiu, P. L., Parajuli, R. R., Ma, Y., Ali, S. R. and He, Huixin, J. Mater. Chem. 19, 6475 (2009).Google Scholar
16. Weng, B., Shepherd, R. L., Crowley, K., Killard, A. J. and Wallace, G. G., Analyst 135, 2783 (2010).Google Scholar
17. Jiménez, P., Castell, P., Sainz, R., Ansón, A., Martínez, M.T., Benito, A.M., and Maser, W.K., J. Phys. Chem. B 114, 1581 (2010).Google Scholar
18. Zhao, M., Wu, X., and Cai, C., J. Phys. Chem. C 113, 49894991 (2009).Google Scholar
19. Hoa, L. Q., Sugano, Y., Yoshikawa, H., Saito, M., and Tamiya, E., Biosens. Bioelectron. 25, 2509 (2010).Google Scholar
20. Hoa, L. Q., Yoshikawa, H., Saito, M., and Tamiya, E., J. Mater. Chem. 21, 4068 (2011).Google Scholar
21. Hoa, L. Q., Vestergaard, M. C., Yoshikawa, H., Saito, M., and Tamiya, E., Electrochem. Commun. 13, 746 (2011).Google Scholar
22. Hoa, L. Q., Sugano, Y., Yoshikawa, H., Saito, M., and Tamiya, E., Electrochim. Acta 56, 9875 (2011).Google Scholar