Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T11:26:07.943Z Has data issue: false hasContentIssue false

Study of the Deep Levels of a GaAs/p-GaAs1−xBix Heterostructure Grown by Molecular Beam Epitaxy

Published online by Cambridge University Press:  17 May 2012

Takuma Fuyuki
Affiliation:
Department of Electronics, Kyoto Institute of Technology, Sakyo, Kyoto, 606-8585, Japan
Shota Kashiyama
Affiliation:
Department of Electronics, Kyoto Institute of Technology, Sakyo, Kyoto, 606-8585, Japan
Kunishige Oe
Affiliation:
Department of Electronics, Kyoto Institute of Technology, Sakyo, Kyoto, 606-8585, Japan
Masahiro Yoshimoto
Affiliation:
Department of Electronics, Kyoto Institute of Technology, Sakyo, Kyoto, 606-8585, Japan
Get access

Abstract

Deep-level densities of p-GaAs1−xBix and at the GaAs/p-GaAs1−xBix heterointerface have been shown to be sufficiently low for device applications based on the results of deep-level transient spectroscopy, isothermal capacitance transient spectroscopy and admittance spectroscopy. Although the metastable alloy of GaAs1−xBix is grown by molecular beam epitaxy at low temperature (370 °C), the deep-level density of p-GaAs1−xBix is suppressed such that it is on the order of 1015 cm−3. The state density at the heterointerface was determined to be 8 · 1011 cm−2eV−1, which is comparable to other III–V heterointerfaces formed at high temperatures. The surfactant-like effect of Bi is believed to prevent defect formation during low-temperature growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Oe, K. and Okamoto, H., Jpn. J. Appl. Phys. 37, 1283 (1998).Google Scholar
2. Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., and Schiettekatte, F., Appl. Phys. Lett. 82, 2245 (2003).Google Scholar
3. Huang, W., Oe, K., Feng, G., and Yoshimoto, M., J. Appl. Phys. 98, 053505 (2005).Google Scholar
4. Lu, X., Beaton, D. A., Lewis, R. B., Tiedje, T., and Zhang, Y.: Appl. Phys. Lett. 95, 041903 (2009).Google Scholar
5. Adachi, S., Physical Properties of III–V Semiconductor Compounds (Wiley, New York, 1992).Google Scholar
6. Oe, K., Jpn. J. Appl. Phys. 41, 2801 (2002).Google Scholar
7. Yoshida, J., Kita, T., Wada, O., and Oe, K., Jpn. J. Appl. Phys. 42, 371 (2003).Google Scholar
8. Tominaga, Y., Oe, K., and Yoshimoto, M., Appl. Phys. Express 3, 062201 (2010).Google Scholar
9. Yoshimoto, M., Murata, S., Chayahara, A., Horino, Y., Saraie, J., and Oe, K., Jpn. J. Appl. Phys. 42, 1235 (2003).Google Scholar
10. Ueda, O., Tominaga, Y., Ikenaga, N., Yoshimoto, M., and Oe, K.: presented at 23rd Int. Conf. Indium Phosphide and Related Materials (IPRM2011), 2011.Google Scholar
11. Kado, K., Fuyuki, T., Yamada, K., Oe, K., and Yoshimoto, M., Jpn. J. Appl. Phys. 51, 040204 (2012).Google Scholar
12. Nicollian, E. H. and Brews, J. R., MOS Physics and Technology (Wiley, New York, 2003). pp. 183193.Google Scholar
13. Shiobara, S., Hashizume, T., and Hasegawa, H., Jpn. J. Appl. Phys. 35, 1159 (1996).Google Scholar
14. Krispin, P., Spuruytte, S. G., Harris, J. S., and Ploog, K. H., J. Appl. Phys. 88, 4153 (2000).Google Scholar
15. Cho, Yong-Hoon, Choe, Byung-Doo, Kim, Y., and Lim, H., J. Appl. Phys. 81, 7362 (1997).Google Scholar