Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T11:52:02.006Z Has data issue: false hasContentIssue false

The Subsurface Hydrogen Barrier Layer in Plasma-Treated Silicon

Published online by Cambridge University Press:  28 February 2011

A. E. Jaworowski
Affiliation:
Department of Physics, Wright State University, Dayton, Ohio 45435, USA
L. S. Wielunski
Affiliation:
Department of Physics, SUNY at Albany, Albany, New York 12222, USA
G. Bambakidis
Affiliation:
Department of Physics, Wright State University, Dayton, Ohio 45435, USA
Get access

Abstract

The near-surface hydrogen profile was measured using the 15N hydrogen profiling technique in silicon. By depositing an adlayer of Al on the surface we were able to observe the separation of the near-surface hydrogen profile in silicon from the surface contamination layer. The hydrogen profiling of the near-surface region revealed the existence of a subsurface hydrogen layer which acts as a barrier to the transfer of hydrogen into the bulk. The observed subsurface layer is saturated with molecular hydrogen and its profile drops off sharply with increasing depth. The structure of this molecular hydrogen barrier and its thermal stability were studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pankove, J.I., Lampert, M.A. and Tarng, M.L., Appl.Phys.Lett. 32, 439 (1978).Google Scholar
2. Seager, C.H. and Ginley, D.S., Appl.Phys.Lett. 34, 337 (1979)7 Google Scholar
3. Benton, J.L., Doherty, C.J., Ferris, S.D., Flamm, D.L., Kimerling, L.C. and Leamy, H.J., Appl.Phys.Lett. 36, 670 (1980).Google Scholar
4. Seager, C.H. and Ginley, D.S., J.Appl.Phys. 52, 1050 (1981).Google Scholar
5. Pearton, S.J. and Tavendale, A.J., Phys.Rev.B. 26, 1105 (1982).Google Scholar
6. Johnson, N.M., Biegelsen, D.K. and Moyer, D., Appl.Phys.Lett. 40, 882 (1982).Google Scholar
7. Tavendale, A.J. and Pearton, S.J., J.Phys.C. 16, 1665 (1983)7 Google Scholar
8. Pearton, S.J. and Haller, E.E., J.Appl.Phys. 54, 3613 (1983).Google Scholar
9. Pearton, S.J., Kahn, J.M., Hansen, W.L. and Haller, E.E., J.Appl.Phys. 55, 1464 (1984).Google Scholar
10. Corbett, J.W., Sahu, S.N., Shi, T.S. and Snyder, L.C., Phys.Lett. 93A, 303 (1983).CrossRefGoogle Scholar
11. Mainwood, A. and Stoneham, A.M., Physica 116B, 101 (1983).Google Scholar
12. Mainwood, A. and Stoneham, A.M., J.Phys.C.Solidd State Phys. 17, 2513 (1984).Google Scholar
13. Hall, R.N., J.Electron.Mater. 14a, 759 (1985).Google Scholar
14. Pearton, S.J., J.Electron.Mater. 14a, 737 (1985).Google Scholar
15. Corbett, J.W., Peak, D., Pearton, S.J. and Sganga, A.G., in NATO ASI on Hydrogen in Disordered and Amorphous Solids, edited by Bambakidis, G. (Plenum, New York, 1986), to be published.Google Scholar
16. Jaworowski, A.E. and Corbett, J.W., J.Electron.Mater. 14a, 767 (1985).Google Scholar
17. Jaworowski, A.E., Wielunski, L.S. and Listerman, T.W., in “Microscopic Identification of Electronic Defects in Semiconductors”, edited by Johnson, N.M., Bishop, S.G. and Watkins, G.D. (Mat.Res.Soc. NY 1985), Vol.46,p.561.Google Scholar
18. Leich, D.A. and Tombrello, T.A., Nucl.Instrum.Methods 108, 67 (1973).Google Scholar
19. Lanford, W.A., Tratvetter, H.P., Ziegler, J.F. and Keller, J., Appl.Phys. Lett. 28, 566 (1976).Google Scholar
20. Lanford, W.A., Nucl.Inst.Methods 149, 1 (1978).Google Scholar
21. Maurel, B. and Amsel, G., Nucl.Inst.Meth.Phys.Res. 218, 159 (1983).Google Scholar
22. Damjantschitsch, H., Weiser, M., Heusser, G., Kalbitzer, S. and Mannsperger, H., Nucl.Inst.Meth.Phys.Res. 218, 129 (1983).Google Scholar
23. Dube, C., Hanoka, J.l. and Sandstrom, D.B., Appl.Phys.Lett. 44, 425 (1984).Google Scholar
24. Wald, F.V., in “Crystals:Growth Properties and Appl.” edited by Grabmaier, J. (Springer, Berlin, 1981),Vol.5, p.147.Google Scholar
25. Martin, J.S. and Andrews, M.L., Aerospace Research Lab.,Rept.No. 73-0155 (1973).Google Scholar
26. Hanoka, J.I., Dube, C.E. and Sandstrom, D.B., in “Microscopic Identification of Electronic Defects in Semiconductors”, edited by Johnson, N.M., Bishop, S.G. and Watkins, G.D. (Mat.Res.Soc. NY 1985), Vol.46, p.553.Google Scholar