Article contents
Sulfur Nanoparticles Synthesis and Characterization from H2S Gas, Using Novel Biodegradable Iron Chelates in Aqueous Surfactant Systems
Published online by Cambridge University Press: 01 February 2011
Abstract
Sulfur nanoparticles were synthesized from hazardous H2S gas by desulfurization based on liquid redox process [1]. The use of novel biodegradable iron chelates, in particular, FeCl3-malic acid chelate system has been extensively studied in various aqueous surfactant systems of Tween 80, SDS, CTAB for catalytic oxidation of H2S gas at ambient conditions of temperature, pressure and neutral pH. The structural features of sulfur nanoparticles have been characterized by XRD, TEM, and DLS measurements. XRD analysis indicates the presence of Metal-sulfur (JCPDS-08247). TEM analysis shows that the morphology of sulfur nanoparticles synthesized in aqueous surfactant system of Tween 80 is nearly uniform in size of 12nm average particle size, in SDS surfactant system shows 15nm average particle size, where as sulfur nanoparticles synthesized in CTAB shows average particle size of 7nm. The DLS result shows the mono-dispersity of the sulfur nanoparticles in the aqueous surfactant systems. The described process serves mainly two objectives; (a) waste utilization for preparation of commercially important nano-sulfur product and (b) reduction in environmental pollution. 1. G. Nagal, Chem. Eng. 104, 125 (1997).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2008
References
- 1
- Cited by