Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T16:29:45.883Z Has data issue: false hasContentIssue false

Superplasticity of Non-Oxide Ceramics

Published online by Cambridge University Press:  16 February 2011

Fumihiro Wakai
Affiliation:
Government Industrial Research Institute, Nagoya 1–1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Yasuharu Kodama
Affiliation:
Government Industrial Research Institute, Nagoya 1–1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Shuji Sakaguchi
Affiliation:
Government Industrial Research Institute, Nagoya 1–1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Norimitu Murayama
Affiliation:
Government Industrial Research Institute, Nagoya 1–1 Hirate-cho, Kita-ku, Nagoya 462, Japan
Kansei Izaki
Affiliation:
Mitsubishi Gas Chemical Company Inc. 182 Shinwari, Tayuhama, Niigata 950–31, Japan
Koichi Niihara
Affiliation:
The Institute of Scientific and Industrial Research, Osaka University, 8–1 Mihogaoka, Ibaraki 567, Japan
Get access

Abstract

Superplasticity is a mode of deformation for fine-grained polycrystalline solids at elevated temperatures: included are metals, ionic polycrystals (e.g. oxides) and covalent polycrystals (e.g. non-oxide ceramics). Plastic deformation of covalent crystals by dislocation glide is not easy because of their high Peierls force. This paper describes high ductilities in Si3N4 and SiC, and also reports superplastic elongations in Si3N4/SiC composite.

Fine-grained Si3N4/SiC composites (20 wt% SiC) were fabricated by hot-pressing amorphous Si-C-N powder with 6 wt% Y2O3 and 2 wt% A12O3 as sintering aids. The composites were composed of equiaxed grains (<200 nm) and elongated grains. A composite exhibited a superplastic elongation larger than 150 % at 1600 °C and at an initial strain rate of 4 × 10−5 s−1. The superplasticity of the composite is probably related to the presence of an intergranular liquid phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pearson, C.E., J. Inst. Metals., 54, 111 (1934).Google Scholar
2. Edington, J.W., Melton, K.N., and Cutler, C.P., Prog. Mater. Sci., 21, 61 (1976).Google Scholar
3. Wakai, F., Sakaguchi, S., and Matsuno, Y., Advanced Ceramic Materials, 1, 259 (1986); F. Wakai and H. Kato, Advanced Ceramic Materials, 3, 71 (1988).Google Scholar
4. Wakai, F., Murayama, N., Sakaguchi, S., Kato, H., and Kuroda, K., Advances in Ceramics, Vol.24, Science and Technology of Zirconia III, edited by Somiya, S., Yamamoto, N., and Yanagida, H. (The American Ceramic Society, Inc., Westerville, Ohio, 1988) p. 583.Google Scholar
5. Nieh, T.G., McNally, C.M., and Wadsworth, J., Scripta Metall., 22, 1297 (1988); 23, 457 (1989).Google Scholar
6. Yoon, C.K. and Chen, I-Wei, J. Am. Ceram. Soc., in press.Google Scholar
7. Carry, C., Proc. MRS Int'l Mtg. on Adv. Mats., Vol.7 Superplasticity, edited by Kobayashi, M. and Wakai, F. (Mater. Res. Soc., Pittsburgh, PA 1989) p. 199.Google Scholar
8. Wakai, F., Br. Ceram. Trans. J., 88, 205 (1989).Google Scholar
9. Wakai, F., Kodama, Y., and Nagano, T., Japanese Journal of Applied Physics Series 2, Lattice Defects in Ceramics, 69 (1989).Google Scholar
10. Maehara, Y. and Langdon, T.G., J. Mater. Sci. in press.Google Scholar
11. Sherby, O.D. and Ruano, O.A., Superplastic Forming of Structural Alloys, edited by Paton, N.E. and Hamilton, C.H. (Met. Soc. of AIME, Warrendale, PA 1982) p. 241.Google Scholar
12. Carry, C. and Mocellin, A., Superplasticity, edited by Baudelet, B. and Suery, M. (Editions du CNRS, Paris, 1985) 16.1.Google Scholar
13. Hart, E.W., Acta Metall., 15, 351 (1967).Google Scholar
14. Evans, A.G., Rice, J.R., and Hirth, J.P., J. Am. Ceram. Soc., 63, 368 (1980).Google Scholar
15. Lange, F.F., Deformation of Ceramic Materials, edited by Bradt, R.C. and Tressler, R.E. (Plenum Press, 1975) p. 361.Google Scholar
16. Raj, R. and Chung, C.K., Acta Metall., 29, 159 (1981).Google Scholar
17. Pharr, G.M. and Ashby, M.F., Acta Metall., 31, 129 (1983).Google Scholar
18. Wakai, F., Kodama, Y., Sakaguchi, S., Murayama, N., Izaki, K., and Niihara, K., Nature, 344, 421 (1990).Google Scholar
19. Progress in Nitrogen Ceramics, edited by Riley, F.L. (Martinus Nijhoff Publishers, Boston, 1983).Google Scholar
20. Kossowsky, R., Miller, D.G., and Diaz, E.S., J. Mater. Sci. 10, 983 (1975).Google Scholar
21. Lange, F.F., Diaz, E.S., and Andersson, C.A., Ceramic Bulletin, 58, 845 (1979).Google Scholar
22. Lange, F.F., Davis, B.I., and Clarke, D.R., J. Mater. Sci., 15, 601 (1980).Google Scholar
23. Karunaratne, B.S.B. and Lewis, M.H., J. Mater. Sci., 15, 449 (1980); B.S.B. Karunaratne and M.H. Lewis, J. Mater. Sci., 15, 1781 (1980).Google Scholar
24. Tsai, R.L. and Raj, R., Acta Metall., 30, 1043 (1982).Google Scholar
25. Tsai, R.L. and Raj, R., J. Am. Ceram. Soc., 65, C–88 (1982).Google Scholar
26. Wang, J.-G. and Raj, R., J. Am. Ceram. Soc., 67, 399 (1984).Google Scholar
27. Superplastically Forged Ceramics: dense, near-net shapes, (Technical Insights, Inc., Englewood/Fort Lee, NJ, 1989) p. 62.Google Scholar
28. Carry, C. and Mocellin, A., Deformation of Ceramic Materials II, edited by Tressler, R.E. and Bradt, R.C. (Plenum Press, New York, 1984) p.391.Google Scholar
29. Nose, T., Fujii, T. and Kubo, H., Proc. MRS Int'l Mtg. on Adv. Mats., Vol.7 Superplasticity, edited by Kobayashi, M. and Wakai, F. (Mater. Res. Soc., Pittsburgh, PA 1989) p. 293.Google Scholar
30. Gifkins, R.C., Met. Trans., 7A,1225 (1976).Google Scholar
31. Campbell, G.H., Dalgleish, B.J., and Evans, A.G., J. Am. Ceram. Soc., 72, 1402 (1989).Google Scholar
32. Suzuki, T., Kawakami, T., Koyama, T., Izaki, K., Nakano, R., Shitara, T., Hakkei, K., Hirai, K., and Niihara, K., Yogyo-Kyokai-Shi, 95, 81 (1987).Google Scholar
33. Izaki, K., Hakkei, K., Ando, K., and Niihara, K., Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J.D. and Ulrich, D.R. (John Wiley & Sons, New York, 1988) p. 891.Google Scholar
34. Tsuge, A., Inoue, H. and Komeya, K., J. Am. Ceram. Soc., 72, 2014 (1989).Google Scholar
35. Greskovich, C. and Prochazka, S., J. Am. Ceram. Soc., 64, C–96 (1981).Google Scholar
36. Yoshizawa, Y. and Sakuma, T., Proc. 1st Japan Int'l. SAMPE Symp. (Society of the Advancement of Material and Process Engineering, 1989) p. 272.Google Scholar