Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-16T05:50:15.399Z Has data issue: false hasContentIssue false

Surface atomie resolution microscopy of sulfated-zirconia and Fe/Mn promoted sulfated zirconia

Published online by Cambridge University Press:  10 February 2011

M. Benaissa
Affiliation:
Inst. Nacional de Investigaciones Nucleares (ININ), Gerencia de Materiales, Mexico D.F., MEXICO, e-mail: mohamed@sysull.ifisicacu.unam.mx
J. G. Santiesteban
Affiliation:
Air Products & Chemicals, Inc., Allentown, PA 18195–1501, USA
G. Diaz
Affiliation:
Instituto de Física - UNAM, A.p. 20–364, Mexico D.F. 01000, MEXICO
M. José-Yacamán
Affiliation:
Instituto de Física - UNAM, A.p. 20–364, Mexico D.F. 01000, MEXICO
Get access

Abstract

By using high-resolution transmission electron microscopy (HRTEM), it was possible to elucidate edge-on views of the surface atomic structure of sulfated zirconia and Fe/Mn promoted sulfated-zirconia catalysts. The results indicate that the presence of sulfate groups and Fe/Mn species not only stabilizes the tetragonal zirconia phase, but also induces the formation of well-faceted small zirconia crystallites. The shape of the sulfated zirconia crystallites exhibits two types of surfaces: long smooth and relatively few short rough planes, with the long smooth (110) plane being clearly predominant. HRTEM images of this plane revealed the presence of an adsorbed sulfate layer. On the other hand, the presence of Fe and Mn species were apparent on the (001) and (110) surfaces of zirconia particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hino, M., and Arata, K.J., J. Chem. Soc. Chem. Commun, 1148(1979)Google Scholar
2. Tanabe, K., Misono, M., Yoshio, O. and Hatton, H., in “New Solid Acids and Bases: Their Catalytic Properties” (Eds. Elsevier, Amsterdam and Kodansha, Tokyo, 1989) p. 199.Google Scholar
3. Holstein, , Wei, J.T. and Hsu, C.Y., US Patent 4 918041 (1990)Google Scholar
4. Hsu, C.Y., Heimbuch, C.R., Arms, C.T. and Gates, B.C., J. Chem. Soc. Commun, 1645 (1992)Google Scholar
5. Jatia, A., Chang, C., Macleod, J.D., Okubo, T. and Davis, M., Catalysis Letters 25, 21 (1994)Google Scholar
6. Adeeva, V., Lei, G.D. and Sachtler, W.M.H., Appl. Catal., 118, L11 (1994)Google Scholar
7. Yamaguchi, T., Jin, T. and Tanabe, K., J. Phys. Chem., 90, 3148 (1986)Google Scholar
8. Bensitel, M., Saur, O. and Lavalley, J.C., Mater. Chem. axis. Phys., 19, 147(1988)Google Scholar
9. Lunsford, J.H., Song, H., Campbell, S.M., Liang, C.H. and Anthony, R.G., Catalysis Letters, 27, 305 (1994)Google Scholar
10. Riemer, T., Spielbauer, D., Hunger, M., Mekhemer, H.A.H. and Knozinger, H., J. Chem. Soc., Chem. Commun, 1181(1994)Google Scholar
11. Marks, L.D. and Smith, D.J., Nature 303, 316 (1983)Google Scholar
12. Smith, D.J., Bursill, L.A. and Jefferson, D.A., Surface Science 175, 673 (1986)Google Scholar
13. Jefferson, D.A., and Harris, P.J.F., Nature 332, 617 (1988)Google Scholar
14. José-Yacamán, M., Herrera, R., Gómez, A., Tehuacanero, S. and Schabes, P., Surface Science 237, 248 (1990)Google Scholar
15. Benaissa, M., Santiesteban, J., Diaz, G., Chang, C.D. and José Yacamán, M., J. Catal, 161, 694 (1996)Google Scholar
16. Benaissa, M., Santiesteban, J., Diaz, G. and José Yacamán, M., Surface Science, 364, L591 (1996)Google Scholar
17. Uppenbrink, J., Kirkland, A.I.,, Tang, D. and Jefferson, D.A.,, Surface Science 238, 132(1990)Google Scholar
18. Gribelyuk, M.A., Harris, P.J.F. and Hutchison, J.L., Phil. Mag. B 69, 655 (1994)Google Scholar