Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T19:39:51.196Z Has data issue: false hasContentIssue false

Surface Waves and Strain Modulations in Si1-xGex Alloy Layers on Si

Published online by Cambridge University Press:  25 February 2011

A. G. Cullis
Affiliation:
DRA Malvern, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
D. J. Robbins
Affiliation:
DRA Malvern, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
A. J. Pidduck
Affiliation:
DRA Malvern, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
P. W. Smith
Affiliation:
DRA Malvern, RSRE, St Andrews Road, Malvern, Worcs WR14 3PS, UK
Get access

Abstract

The growth of strained, continuous Si1-xGex epitaxial alloy layers on Si can, under certain conditions, result in the occurrence of marked, small-scale layer thickness fluctuations in the form of crystallographically-aligned, interlocking ripple arrays. In the present work, combined transmission electron microscope (TEM) and atomic force microscope studies are employed to reveal the detailed nature of these surface ripples. TEM contrast studies demonstrate that well-defined, oscillatory strain variations accompany these ripple structures, the presence of which is shown to be associated with partial elastic strain-relief and lowering of the energy of die strained-layer system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cullis, A.G. and Booker, G.R., J. Crystal Growth 9, 132 (1971).Google Scholar
2. Halberg, L.I. and Nevin, J.H., J. Electron. Mat. 11, 779 (1982).Google Scholar
3. Eaglesham, D.J. and Cerullo, M., Phys. Rev. Letts. 64, 1943 (1990).Google Scholar
4. LeGoues, F.K., Copel, M. and Tromp, R.M., Phys. Rev B42, 690 (1990).Google Scholar
5. Kuan, T.S. and Iyer, S.S., Appl. Phys. Letters 59, 2242 (1991).Google Scholar
6. Robbins, D.J., Cullis, A.G. and Pidduck, A.J., J. Vac. Sci. Technol. B9, 2048 (1991).CrossRefGoogle Scholar
7. Cullis, A.G., Robbins, D.J., Pidduck, A.J. and Smith, P.W., in Microscopy of Semiconducting Materials 1991, Inst. Phys. Conf. Ser. 117, Eds. Cullis, A.G. and Long, N.J. (IOP Publishing, Bristol, 1991) pp. 439444.Google Scholar
8. Cullis, A.G., Robbins, D.J., Pidduck, A.J. and Smith, P.W., J. Crystal Growth 123, 333 (1992).Google Scholar
9. Robbins, D.J. and Young, I.M., Appl. Phys. Letters 50, 1575 (1987).Google Scholar
10. Robbins, D.J., Pidduck, A.J., Cullis, A.G., Chew, N.G., Hardeman, R.W., Gasson, D.B., Pickering, C., Daw, A.C., Johnson, M. and Jones, R., J. Crystal Growth 81, 421 (1987).Google Scholar
11. Nakahara, S. and Cullis, A.G., Ultramicroscopy 45, 365 (1992).Google Scholar
12. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W. and Whelan, M.J., Electron Microscopy of Thin Crystals (Butterworths, London, 1971) ch. 11.Google Scholar
13. Pidduck, A.J., Robbins, D.J., Cullis, A.G., Leong, Y. and Pitt, A.M., Thin Solid Films, to be published.Google Scholar
14. Srolovitz, D.J., Acta. Metall. 37, 621 (1989).Google Scholar
15. Snyder, C.W., Orr, B.G., Kessler, D. and Sander, L.M., Phys. Rev. Letts. 66, 3032 (1991).Google Scholar