Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T20:45:12.978Z Has data issue: false hasContentIssue false

Synchrotron x-ray Scattering Study on Oxidation of AIN/Sapphire

Published online by Cambridge University Press:  10 February 2011

H. C. Kang
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, KOREA 500-762, dynoh@kjist.ac.kr
S. H. Seo
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, KOREA 500-762, dynoh@kjist.ac.kr
D. Y. Noh
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju, KOREA 500-762, dynoh@kjist.ac.kr
Get access

Abstract

We present an x-ray scattering study of the oxidation of AIN/sapphire films into λ-A12O3 upon annealing. Epitaxial AIN/Sapphire(0001) transforms into nano-crystalline epitaxial λ-A12O3 during annealing at temperatures above 800°C in air. The crystalline orientational relation between the λ-Al2O3 and AIN are < 111 > // < 0001 > in the film normal direction, and < 110 > // < 1120 > in the film plane direction. The domain size of the spinel λ-A1203 crystalline is smaller than 50 Å in both out-of-plane and in-plane directions. The XPS depth profiles of the oxide film showed that the film is composed of aluminum and oxygen, and the atomic concentration ratio is about 2:3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Clarke, D. R., Phys. Stat. Sol. (a) 166, 183 (1998)10.1002/(SICI)1521-396X(199803)166:1<183::AID-PSSA183>3.0.CO;2-R3.0.CO;2-R>Google Scholar
2. Kimura, T. and Ishida, M., Jpn. J. Appl. Phys. 38, 853 (1999)10.1143/JJAP.38.853Google Scholar
3. Zborowski, J. T., Golding, T. D., Forrest, R. L., Marton, D., and Zhang, Z., J. Vac. Sci. Technol. B 16(3), 1451 (1998)10.1116/1.589963Google Scholar
4. Yu, N., Simpson, T. W., Mclntyre, P. C., Nastasi, M., and Mitchell, I. V., Appl. Phys. Lett. 67(7), 924 (1995)10.1063/1.114696Google Scholar
5. Kolodzey, J., Chowdhury, E. A., Qui, G., , Olowolafe, Swann, C. P., Unruh, K. M., Suehle, J., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 71(26), 3802 (1997)10.1063/1.120510Google Scholar
6. Chowdhury, E. A., Kolodzey, J., Olowolafe, J. O., Qiu, G., Katulka, G., Hits, D., Dashiell, M., Weide, D., Swann, C. P., and Unruh, K. M., Appl. Phys. Lett. 70(20), 2732 (1997)10.1063/1.118980Google Scholar
7. Kang, H. C., Seo, S. H., Noh, D.Y. Jpn. J. Appl. Phys 38, Suppl. 38-1, 187 (1999)10.7567/JJAPS.38S1.187Google Scholar
8. Shim, K. H., Myoung, J., Gluschenkov, O., Kim, K., Kim, C., and Robinson, I. K., Jpn. J. Appl. Phys. 37, L313 (1998)10.1143/JJAP.37.L313Google Scholar