Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:43:39.224Z Has data issue: false hasContentIssue false

Synthesis and Optical Characterization of Er-Doped GaN Low-Dimensional Structures

Published online by Cambridge University Press:  01 February 2011

Joan Carvajal
Affiliation:
joan.carvajal@stonybrook.edu, State University of New York, Dept. Materials Science & Engineering, 315, Old Engineering Building, Stony Brook, New York, 11794-2275, United States, 631-632-8505
Magdalena Aguilo
Affiliation:
magdalena.aguilo@urv.cat, Universitat Rovira i Virgili, Physics and Crystallography of Materials (FiCMA), Tarragona, N/A, 43007, Spain
Francesc Diaz
Affiliation:
f.diaz@urv.cat, Universitat Rovira i Virgili, Physics and Crystallography of Materials (FiCMA), Tarragona, N/A, 43007, Spain
J. Carlos Rojo
Affiliation:
jrojo@notes.cc.sunysb.edu, State University of New York, Materials Science & Engineering, Stony Brook, New York, 11794, United States
Get access

Abstract

Er-doped GaN rod-shaped low-dimensional structures have been synthesized on the surface of a silicon (001) substrate by the direct reaction of Ga, NH3 and Er using a catalyst-assisted chemical vapor deposition technique. The low-dimensional nanostructures were characterized spectrocopically analyzing the hypersensitive 4G11/2 and 2H11/2 bands of Er3+ located at 375 and 425 nm, respectively. Green and near-infrared (IR) emission produced by these Er-doped GaN low-dimensional structures has been observed under excitation at 488 and 543 nm in a confocal microscope.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kim, J.H., Holloway, P.H., Adv. Mater., 17, 91 (2005)Google Scholar
2 Zavada, J.M., Zhang, D., Solid State Eelectron. 38, 1285 (1995)Google Scholar
3 Doualan, J.L., Boulanger, P. Le, Girard, S., Margerie, J., Ermeneux, F.S., Moncorge, R., J. Lumin. 72–74, 179 (1997)Google Scholar
4 Favennec, P.N., L'Haridon, H., Salvi, M., Moutonnet, D., Guillou, Y.L., Electron. Lett. 25, 718 (1989)Google Scholar
5 Gil, B., Group III nitride semiconductor compounds, ed. Gil, B. (Oxford Science Publications, 1998)Google Scholar
6 Nakamura, S., Pearton, S., Fasol, G., The Blue Laser Diode, 2nd. Ed. (Springer-Verlag, 2000)Google Scholar
7 Wu, H., Poitras, C.B., Lipson, M., Spencer, M.G., Hunting, J., DiSalvo, F.J., Appl. Phys. Lett., 86, 191918 (2005)Google Scholar
8 Steckl, A.J., Heikenfeld, J.C., Lee, D.S., Garter, M.J., Baker, C.C., Wang, Y., IEEE J. Selected Topics in Quantum Electron. 8, 749 (2002)Google Scholar
9 Kikuchi, A., Kawai, M., Tada, M., Kishino, K., Jpn. J. Appl. Phys., 43, L1524 (2004)Google Scholar
10 Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., P. Yang, Saykally, R.J., Nature Mater., 1, 106 (2002)Google Scholar
11 Zhong, Z., Qian, F., Wang, D., Lieber, C.M., Nano Lett., 3, 343 (2003)Google Scholar
12 Radovanovic, P.V., Barrelet, C.J., Gradecak, S., Qian, F., Lieber, C.M., Nano Lett., 5, 1407 (2005)Google Scholar
13 Ragan, R., Kim, S., Li, X., Williams, R. Stanley, Appl. Phys. A, 80, 1339 (2005)Google Scholar
14 Wang, Z., Coffer, J.L., Nano Lett., 2, 1303 (2002)Google Scholar
15 Hirte, T., Sasaki, S., Li, W., Miyashita, H., Kimpara, T., Satoh, T., Thin Solid Films, 487, 35 (2005)Google Scholar
16 McCormac, J.M., Platt, P.R., Saxer, R.K., J. Chem. Eng. Data, 16, 167 (1971)Google Scholar
17 Chen, C.C., Yeh, C.C., Chen, C.H., Yu, M.Y., Liu, H.L., Wu, J.J., Chen, K.H., Chen, L.C., Peng, J.Y., Chen, Y.F., J. Am. Chem. Soc. 123, 2791 (1997)Google Scholar