Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T05:18:22.272Z Has data issue: false hasContentIssue false

Synthesis and Optical Properties of Cadmium- and Lead-Chalcogenide Semiconductor Clusters (Diameter < 5 Nm) In Liquid Solutions and Silicate Glasses

Published online by Cambridge University Press:  28 February 2011

O. I. Micic
Affiliation:
Boris Kidric Institute, Vinca, Belgrade, Yugoslavia.
T. Rajh
Affiliation:
Boris Kidric Institute, Vinca, Belgrade, Yugoslavia.
M. I. Comor
Affiliation:
Boris Kidric Institute, Vinca, Belgrade, Yugoslavia.
S. Zec
Affiliation:
Boris Kidric Institute, Vinca, Belgrade, Yugoslavia.
J. Nedeljkovic
Affiliation:
Clarkson University, Department of Chemistry, Potsdam, NY 13699–5810, U.S.A.
R. C. Patel
Affiliation:
Clarkson University, Department of Chemistry, Potsdam, NY 13699–5810, U.S.A.
Get access

Abstract

Small-particle clusters of CdS, CdSe, CdTe, PbS, and PbSe have been synthesized in aqueous solution. Absorption spectra with very sharp maxima were obtained for extremely small clusters (diameters < 30 Å). However, when clusters grow the excitonic absorption bands gradually decrease and the sharp maxima are replaced by broad shoulders. Cadmium chalcogenide clusters capped with 3-mercapto-l, 2-propanediol can be collected as stable solids with the same properties as original clusters. A method for the incorporation of semiconductor clusters in transparent silicate glasses has been developed. This technique relies on the low temperature sol-gel process, and silane alkoxide as the starting material. The absorption spectra of the clusters in the glasses are identical to those of the starting aqueous solutions. Excess charge carriers on PbS and CdS clusters lead to a blue shift in the optical absorption edge of semiconductors. The appearance of this shift depends critically on the method of colloid preparation and surface chemistry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Brus, L.E., J. Chem. Phys. 79, 5566 (1983);Google Scholar
J. Chem. Phys. 80, 4403 (1984);Google Scholar
J. Phys. Chem. 90, 2555 (1986).Google Scholar
2. Rossetti, R., Elison, J.L., Gibson, J.M., and Brus, L.E., J. Chem. Phys. 8, 4464 (1984).Google Scholar
3. Fojtik, A., Weller, H., Koch, U., and Henglein, A., Ber Bunsen-Gas. Phys. Chem. 88. 969 (1984);Google Scholar
Weller, H., Koch, U., Gutilrrez, M., and Henglein, A., ibid., 88. 4464 (1984).Google Scholar
4. Nozik, A.J., Williams, F., Nenadović, M.T., Rajh, T., and Mićić, O.I., J. Phys. Chem. 89, 397 (1985);Google Scholar
Mićić, O.I., Nenadovic, M.T., Peterson, M.W., and Nozik, A.J., J. Chem. Phys. 91, 1295 (1987).Google Scholar
5. Nedeljković, J.M., Nenadović, M.T., Mićić, O.I., and Nozik, A.J., J. Phys. Chem. 90, 12 (1986).CrossRefGoogle Scholar
6. Dannhauser, T., O’Neil, M., Johansson, K., Whitten, D., and McLendon, G., J. Phys. Chem. 90, 6074 (1986).Google Scholar
7. Watzke, H.J. and Fendler, J.H., J. Phys. Chem. 91, 854 (1987).CrossRefGoogle Scholar
8. Wang, J., Suna, A., Mahler, W., and Kasowski, R., J. Chem. Phys. 87, 7315 (1987).CrossRefGoogle Scholar
9. Rajh, T., Vučemilović, M.I., Dimitrijević, N.M., Mićić, O.I., and Nozik, A.J., J. Chem. Phys. Lett. 143, 305 (1988).Google Scholar
10. DeBrabander, H.F. and Van Pancke, L.C., J. Coord. Chem. 3, 301 (1974).Google Scholar
11. Wang, J. and Herron, N., J. Phys. Chem. 91, 257 (1987).Google Scholar
12. Nosaka, J., Yamaguchi, K., Miyama, H. and Hayashi, H., Chem. Lett. 1988, 605.CrossRefGoogle Scholar
13. Hayes, D., Mićić, O.I., Nenadović, M.T., Swayambunathan, V., and Meisel, D., J. Phys. Chem. 93, 4603 (1989).Google Scholar
14. Fischer, C.H. and Henglein, A., J. Phys. Chem. 93, 5578 (1989).Google Scholar
15. Herron, W., Wang, J., and Eckert, H., J. Am. Chem. Soc. 112, 1322 (1990).Google Scholar
16. Schmitt-Rink, S., Miller, D.A.B., and Chemla, D.S., Phys. Rev. B 35, 8113 (1987).Google Scholar
17. Wang, Y., Suna, A., Mettugh, J., Hilinski, F.E., Lucak, A., and Johnson, D., J. Chem. Phys. 92, 6927 (1990).Google Scholar
18. Matijević, E. and Wilhelmy, D.M., J. Colloid Interface Sci. 86, 476 (1982).Google Scholar
19. Ernsting, E.P., Kaschke, M., Weller, H., and Katsikas, L., J. Opt. Soc. Am. B 7, 1630 (1990).Google Scholar
20. Fojtik, A., Henglein, A., Katsikas, L., and Weller, H., Chem. Phys. Lett. 138, 535 (1987).CrossRefGoogle Scholar
21. Nenadović, M.T., Ćomor, M.I., Vasić, V., and Mićić, O.I., J. Phys. Chem. 94, 6390 (1990).Google Scholar
22. Spanhel, L., Haase, M., Weller, H., and Henglein, A., J. Am. Chem. Soc. 109, 5649 (1987).Google Scholar
23. Rajh, T., Mićić, O.I., Lawless, D., and Serpone, N., to be published.Google Scholar
24. Cardona, M., and Greenaway, D.L., Phys. Rev. 133, A1685 (1964).Google Scholar