Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T15:45:41.307Z Has data issue: false hasContentIssue false

Synthesis and Thermoluminescence of New ZnO Phosphors

Published online by Cambridge University Press:  01 February 2011

C. Cruz-Vázquez
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora 83000 México
H. A. Borbón-Nuñez
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora 83000 México
V. R. Orante-Barrón
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora 83000 México
S. E. Burruel-Ibarra
Affiliation:
Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Apartado Postal 130, Hermosillo, Sonora 83000 México
V. M. Castaño
Affiliation:
Centro de Física Aplicada y Tecnología Avanzada, Instituto de Física de la Universidad Nacional Autónoma de México, Apartado Postal 1-1010, Querétaro, Querétaro 76000 México
R. Bernal
Affiliation:
Departamento de Investigación en Física, Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190 México
Get access

Abstract

In this work, the synthesis and thermoluminescence properties of new ZnO phosphors obtained by a chemical method are reported. Some samples were exposed to beta particle irradiation for doses ranging from 10.0 up to 6,400 Gy, and it was found that the thermoluminescence response as a function of dose is linear for doses below 200 Gy, and sublinear with no saturation clouds for greater doses. A broad shape glow curve with maximum located above 230 °C, that shifts to lower temperatures as dose increases, indicating that second order kinetics thermoluminescence processes are involved. The lower detection limit was estimated to be 13 Gy. We conclude that the phosphors under study are promising to develop dosimeters for high dose radiation dosimetry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Norton, D. P., Heo, Y. W., Ivill, M. P., Ip, K., Pearton, S. J., Chisholm, M. F. and Steiner, T., Mater. Today, 7, 3440, (2004).Google Scholar
2. McKeever, S. W. S., “Thermoluminescence of Solids”, (Cambridge University Press, 1985).Google Scholar
3. Chen, R. and McKeever, S. W. S., “Theory of Thermoluminescence and Related Phenomena”, (World Scientific, 1997).Google Scholar
4. Furetta, C., “Handbook of Thermoluminescence”, (World Scientific, 2003).Google Scholar
5. Muer, D. De and Vorst, W. Maenhout-van der, Physica, 39, 123132, (1968).Google Scholar
6. Diwan, D., Bhushan, S. and Khathuria, S. P., Cryst. Res. Technol. 19, 12651269, (1984).Google Scholar
7. Nikitenko, V. A., Tarkpea, K. E., Pykanov, I. V. and Stoyukhin, S. G., Journal of Applied Spectroscopy, 68, 502507, (2001).Google Scholar
8. Coskun, C., Look, D. C., Farlow, G. C., and Sizelove, J. R., Semicond. Sci. Technol. 19, 752754, (2004).Google Scholar
9. Cruz-Vázquez, C., Rocha-Alonzo, F., Burruel-Ibarra, S. E., Barboza-Flores, M., Bernal, R. and Inoue, M., Appl. Phys. A – Mater. Sci. Process. 79, 19411945, (2004).Google Scholar
10. Cruz-Vázquez, C., Bernal, R., Burruel-Ibarra, S. E., Grijalva-Monteverde, H. and Barboza-Flores, M., Opt. Mater. 27, 12351239, (2005).Google Scholar
11. Pal, U., Meléndrez, R., Chernov, V., Barboza-Flores, M., Appl. Phys. Lett. 89, 183118–1, 183118-3, (2006).Google Scholar
12. Cruz-Vázquez, C., Burruel-Ibarra, S. E., Grijalva-Monteverde, H., Chernov, V. and Bernal, R. Radiat. Eff. Defect. S. 162, 737743, (2007).Google Scholar