Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T18:13:46.520Z Has data issue: false hasContentIssue false

Synthesis of Rare-Earth-Based Oxides for the Ceramic Industry: From Laboratory to Pilot Plant

Published online by Cambridge University Press:  25 February 2011

U. Balachandran
Affiliation:
Materials and Components Technology Division Argonne National Laboratory, Argonne, IL 60439
S. E. Donris
Affiliation:
Materials and Components Technology Division Argonne National Laboratory, Argonne, IL 60439
M. T. Lanagan
Affiliation:
Materials and Components Technology Division Argonne National Laboratory, Argonne, IL 60439
R. B. Poeppel
Affiliation:
Materials and Components Technology Division Argonne National Laboratory, Argonne, IL 60439
J. M. Tourre
Affiliation:
Fine Inorganic Chemicals Division Rhöne-Poulenc, Inc., Cranbury, NJ 08512
J. W. Golowski
Affiliation:
Fine Inorganic Chemicals Division Rhöne-Poulenc, Inc., Cranbury, NJ 08512
Get access

Abstract

A wide variety of compounds, e.g., superconductors, chromites, and manganites, can be synthesized by spray drying a mixture of salts or a combination of salts and sols in a flash dryer. The process ensures good control of stoichiometry, morphology, particle size, and surface area. Appropriate particle-growth and synthesis heat treatments of these fine powders have been conducted, and the resultant powders have been evaluated for possible applications in fuel cells and superconductors. The process has been scaled up to a pilot-plant capacity of ≈40 kg per day.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fee, D. C., Steuenberg, R. K., Claar, T. D., Poeppel, R. B., and Ackerman, J. P., 1983 National Fuel Cell Seminar Abstracts (Courtesy Associates, Washington, DC, 1983), p. 74.Google Scholar
2. Balachandran, U., Dorris, S. E., Picciolo, J. J., Poeppel, R. B., McPheeters, C. C., and Minh, N. Q., in Proceedings of 24th Intersociety Energy Conversion Engineering Conference, Washington, DC, 3, 1541, (1989).Google Scholar
3. Meadowcraft, D. B., Br. J. Appl. Phys. 2. 1225 (1969).Google Scholar
4. Groupp, L. and Anderson, H. U., J. Am. Ceram. Soc. 59, 449, (1976).Google Scholar
5. Chick, L. A., Pederson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E., and Exarhos, G. J., J. Mater. Sci. Lett. (in press).Google Scholar
6. Cava, R. J., Phys. Rev. Lett. 58, 1676, (1987).CrossRefGoogle Scholar
7. Chiu, R. C., Rhine, W. E., Higgins, R. J., and Cima, M. J., in Superconductivity and Ceramic Superconductors II, edited by Nair, K. M., Balachandran, U., Chiang, Y. M., and Bhalla, A. S. (The American Ceramic Society, Westerville, OH, 1991), p. 239.Google Scholar
8. Chen, C. C. and Anderson, H. U., Proceedings Industry-University Advanced Materials Conference II (Adv. Mater. Institute, Golden, CO. 1989) p. 520 Google Scholar
9. Cima, M. J., Chiu, R., and Rhine, W. E., Mat. Res. Soc. Symp. Proc. 99, 241, (1988).Google Scholar
10. Goretta, K. C., Bloom, I., Chen, N., Goudey, G. T., Hash, M. C., Klassen, G., Lanagan, M. T., Poeppel, R. B., Singh, J. P., Shi, D., Balachandran, U., Dusek, J. T., and Capone, D. W. II, Mater. Lett. 7, 161, (1988).Google Scholar
11. Balachandran, U., Poeppel, R. B., Emerson, J. E., Johnson, S. A., Lanagan, M. T., Youngdahl, C. A., Shi, D., Goretta, K. C., and Eror, N. G., Mater. Lett. 8, 454, (1989).Google Scholar
12. Aselage, T. and Keefer, K.. J. Mater. Res. 3. 1279 (1988).Google Scholar
13. Lay, K. W. and Renlund, G. M., J. Am. Cerm. Soc. 73, 1208, (1990).Google Scholar
14. Pechini, M. P., U.S. Patent 3,330,697 (1967).Google Scholar