Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-27T18:36:56.070Z Has data issue: false hasContentIssue false

A Tale of Two Precursors: UHV-CVD of TiO2 From Titanium Nitrate and Titanium Isopropoxide

Published online by Cambridge University Press:  10 February 2011

Wayne L. Gladfelter
Affiliation:
Departments of Chemistry, University of Minnesota, Minneapolis, MN 55455
Charles J. Taylor
Affiliation:
Departments of Chemistry, University of Minnesota, Minneapolis, MN 55455
David C. Gilmer
Affiliation:
Departments of Chemistry, University of Minnesota, Minneapolis, MN 55455
Daniel G. Colombo
Affiliation:
Departments of Chemistry, University of Minnesota, Minneapolis, MN 55455
G. D. Wilk
Affiliation:
Central Research Laboratory, Texas Instruments, Dallas, TX 75243
Stephen A. Campbell
Affiliation:
Electrical Engineering, University of Minnesota, Minneapolis, MN 55455
Jeff Roberts
Affiliation:
Departments of Chemistry, University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

A side-by-side comparison of the TiO2 deposition kinetics and the corresponding film microstructures using titanium(IV) isopropoxide and anhydrous titanium(IV) nitrate was conducted at low pressures (< 10−4 Torr) in an ultrahigh vacuum chemical vapor deposition reactor. Titanium(IV) nitrate exhibited a lower activation energy of reaction (Er= 98 kJ/mol) which allowed deposition at lower temperatures compared to titanium(IV) isopropoxide (Er= 135 kJ/mol). Comparison of the microstructures of films deposited at similar temperatures revealed significant differences in the reaction rate limited kinetic regime. As the growth rates of the two precursors converged in the flux-limited regime, the respective microstructures became indistinguishable.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Yan, J., Gilmer, D. C., Campbell, S. A., Gladfelter, W. L., Schmid, P. G., J. Vac. Sci. Technol. B, 14, 1706 (1996).10.1116/1.589214Google Scholar
2 Campbell, S. A., Gilmer, D. C., Wang, X.-C., Hsieh, M.-T., Kim, H.-S., Gladfelter, W. L., and Yan, J., IEEE Trans. Electron Devices, 44, 104 (1997).10.1109/16.554800Google Scholar
3 Gilmer, D. C., Colombo, D. G., Taylor, C. J., Roberts, J., Haugstad, G., Campbell, S. A. Kim, H.-S., Wilk, G. D., Gribelyuk, M. A., Gladfelter, W. L., Chem. Vap. Deposition, 4, 9 (1998).10.1002/(SICI)1521-3862(199801)04:01<9::AID-CVDE9>3.3.CO;2-V3.3.CO;2-V>Google Scholar
4 Chen, S., Masen, M. G., Gysling, H. J., Paz-Pujalt, G. R., Blanton, T. N., Castro, T., Chen, K. M., Fictorie, C. P., Gladfelter, W. L., Franciosi, A., Cohen, P. I., and Evans, J. F., J. Vac. Sci. Technol. A, 11, 2419 (1993).10.1116/1.578587Google Scholar
5 Kim, H.-S., Gilmer, D. C., Campbell, S. A., and Polla, D. L., Appl. Phys. Lett., 69, 3860 (1996).10.1063/1.117129Google Scholar