Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T14:15:00.461Z Has data issue: false hasContentIssue false

Te Induced AlAs/GaAs Superlattice Mixing

Published online by Cambridge University Press:  21 February 2011

P. Mel
Affiliation:
Department of Physics, Rutgers University, Piscataway, NJ 08855–0849
S. A. Schwarz
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
T. Venkatesan
Affiliation:
Department of Physics, Rutgers University, Piscataway, NJ 08855–0849
C. L. Schwartz
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
E. Colas
Affiliation:
Bellcore, Red Bank, NJ 07701–7020
Get access

Abstract

Te enhanced mixing of AlAs/GaAs superlattice has been observed by secondary ion mass spectrometry. The superlattice sample was grown by organometallic chemical vapor deposition and doped with Te at concentrations of 2×1017 to 5×1018 cm−.3 In the temperature range from 700 to 1000 C, a single activation energy for the Al diffusion of 2.9 eV was observed. Furthermore, it has been found that the relationship between the Al diffusion coefficient and Te concentration is linear. Comparisons have been made between Si and Te induced superlattice mixing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Deppe, D. G., Guido, L. J., Holonyak, N. Jr., and Hsieh, K. C., Appl. Phys. Lett.,49, 510 (1986)Google Scholar
[2] Kapon, E., Stoffel, N. G., Dobisz, E. A., and Bhat, R., Appl. Phys. Lett.,52, 351 (1988)Google Scholar
[3] Laidig, W. D., Holonyak, N. Jr., Camras, M. D., Hess, K., Coleman, J. J. Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett., 38, 776 (1981)CrossRefGoogle Scholar
[4] Kawabe, M., Matsuara, N., Shimizu, N., Hasegawa, F. and Nannichi, Y., Jpn. J. Appl. Phys. Lett., 23, L623 (1984)Google Scholar
[5] Rao, E. V. K., Thibierge, H., Brillouet, F., Alexandre, F., and Azoulay, R., Appl. Phys. Lett. 46, 867 (1985)Google Scholar
[6] Deppe, D. G., Holonyak, N. Jr., Hsieh, K. C., Gavrilovic, P., Stutius, W., and Williams, J., Appl. Phys. Lett.,51, 581 (1987)CrossRefGoogle Scholar
[7] Venkatesan, T., Schwarz, S. A., Hwang, D. M., Bhat, R., Yoon, H. W., and Arakawa, Y., Nuclear Inst. and Meths. in Phys. Res., B9/20, 777 (1987)Google Scholar
[8] Mei, P., Venkatesan, T., Schwarz, S. A., Stoffel, N. G., Harbison, J. P., Hart, D. L., and Florez, L. A., to be published in Appl. Phys. Lett.Google Scholar
[9] Nakanura, T., Komita, S., Inata, T., Muto, S., Hiyamizu, S., and Umebu, I. Layered Structures and Epitaxy Symposium, Mater. Res. Soc., 339 (1986)Google Scholar
[10] Milnes, A. G., ”Deep Impurities in Semiconductors”, John Wiley & Son, New York, 1973, p. 59 Google Scholar
[11] Mei, P., Yoon, H. W., Venkatesan, T., Schwarz, S. A., and Harbison, J. P., Appl. Phys. Lett., 50, 1823 (1987)Google Scholar
[12] Schwarz, S. A., Venkatesan, T., Bhat, R., Koza, M., Yoon, H. W., Arakawa, Y. and Mei, P., Proc. of the Mat. Res. Soc., Vol. 56, 321Google Scholar
[13] Lee, J. W. and Laidig, W. D., J. Electron. Mater., 13, 147 (1984)Google Scholar
[14] Schwarz, S. A., Venkatesan, T., Mei, P., 1988 MRS Symp. (to be published by Mat. Res. Soc., Pittsburgh, PA)Google Scholar
[15] Willoughby, A. F., Proc. of the Mat. Res. Soc., Vol.14, 237 (1983)Google Scholar