Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:00:56.815Z Has data issue: false hasContentIssue false

Temperature Dependence of Spatial and Dynamic Heterogeneities above the Ising Spin Glass Transition

Published online by Cambridge University Press:  10 February 2011

S. C. Glotzer
Affiliation:
Center for Theoretical and Computational Materials Science, NIST, Gaithersburg, MD, 20899
P. H. Poole
Affiliation:
Dept. of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada
A. Coniglio
Affiliation:
Dipartimento di Scienze Fisiche, Univ. di Napoli, Mostra D'Oltramare, Pad. 19, Napoli, Italia, 80125
N. Jan
Affiliation:
Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
Get access

Abstract

The temperature dependence of the microstructure and local dynamics in the paramagnetic phase of the d = 2 and d = 3 ± J Ising spin glass model is examined by comparing the equilibrium distributions of local flip-rates and local energies calculated in large-scale Monte Carlo simulations. The emergence in this model of fast processes as the glass transition is approached corresponds with recent experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ediger, M.D., Angell, C.A. and Nagel, S.R., J. Phys. Chem. 100, 13200 (1996); see also the reviews on glasses in Science 267 (1995), and Proceedings of Workshop on Glasses and the Glass Transition, J. Comp. Mat. Sci 4, 283–388 (1995).Google Scholar
[2] Cicerone, M.T. and Ediger, M.D., J. Chem. Phys. 104 7210 (1996);Google Scholar
Cicerone, M., Blackburn, F.R., and Ediger, M.D., J. Chem. Phys. 102, 471 (1995);Google Scholar
Cicerone, M.T. and Ediger, M.D., J. Chem. Phys. 103, 5684 (1995).Google Scholar
Blackburn, F. R., et al., J. Non-Cryst. Solids 172–174, 256 (1994);Google Scholar
Cicerone, M., Blackburn, F.R., and Ediger, M.D., Macromolecules 28, 8224 (1995).Google Scholar
Schmidt-Rohr, K. and Spiess, H. W., Phys. Rev. Lett. 66, 3020 (1991);Google Scholar
Heuer, H., et al., Phys. Rev. Lett. 75, 2851 (1995).Google Scholar
[3] See, e.g., Adam, G. and Gibbs, J. H., J. Chem. Phys. 43, 139 (1965);Google Scholar
Goldstein, M., J. Chem. Phys. 51, 3328 (1969);Google Scholar
Stillinger, F.H. and Hodgdon, J.A., Phys. Rev. E 50, 2064 (1994) and references therein;Google Scholar
Kivelson, D. et al., Physica A 219, 27 (1995);Google Scholar
Glotzer, S.C. and Coniglio, A., Comp. Mat. Sci. 4, 325 (1995);Google Scholar
Douglas, J.F. and Hubbard, J. B., Comp. Mat. Sci 4, 300 (1995).Google Scholar
[4] Poole, P.H., Glotzer, S.C., Coniglio, A. and Jan, N. (preprint).Google Scholar
[5] Glotzer, S.C., Poole, P.H., Coniglio, A. and Jan, N., Proceedings of YKIS '96, submitted.Google Scholar
[6] Bitko, D., et al, Europhys. Lett. 33, 489 (1996); D. Bitko, et al, J. NIST Research, APS Proceedings from Symposium on 40 Years of Entropy Theory and the Glass Transition, in press.Google Scholar
[7] The first large-scale simulations focusing on the dynamics of the Ising spin glass model were reported in Ogielski, A.T. and Morgenstern, I., Phys. Rev. Lett 54, 928 (1985);Google Scholar
Ogielski, A.T. and Stein, D.L., Phys. Rev. Lett. 55, 1634 (1985);Google Scholar
Ogielski, A.T., Phys. Rev. B 32, 7384 (1985);Google Scholar
Ogielski, A.T. and Huse, D. A., Phys. Rev. Lett. 56, 1298 (1986);Google Scholar
Ogielski, A.T., Phys. Rev. Lett. 57, 1251 (1986). See alsoGoogle Scholar
Binder, K. and Young, A. P., Rev. Mod. Phys. 58, 801 (1986), andGoogle Scholar
Reger, H., Ann. Rev. Comp. Phys. II, 295 (World Scientific, Singapore, 1995) for reviews.Google Scholar
[8] For comparison, note that for a ferromagnetic Ising model εi would approach the same value for all sites. The same is true for νi.Google Scholar
[9] If P(x) describes the distribution of a set of N values {x i}, then the standard deviation σ of P{x} is given by where 〈x〉 is the average value of x. The skewness γ of P(x) is given by .Google Scholar
[10] A similar plot for the ferromagnetic Ising model would display a single point for each temperature.Google Scholar
[11] Nagel, S., et al., Advances in Chem. Phys., in press;Google Scholar
Dixon, P., et al, Phys. Rev. Lett. 65, 1108 (1990);Google Scholar
Deegan, R.D. and Nagel, S.R., Phys. Rev. B 52, 5653 (1995) and refs. therein.Google Scholar
[12] Lunkenheimer, P., et al., Phys. Rev. Lett. 77, 318 (1996); Proceedings of YKIS '96, in press, and these proceedings.Google Scholar
[13] Sokolov, A., et al., these proceedings, and references therein.Google Scholar