Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T23:26:57.116Z Has data issue: false hasContentIssue false

A Template Approach to Metal/III-V Semiconductor Epitaxy

Published online by Cambridge University Press:  25 February 2011

T. Sands
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
J.P. Harbison
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
C.J. Palmstrøm
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
R. Ramesh
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
V.G. Keramidas
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
Get access

Abstract

The phase, orientation, defect structure, and surface morphology of an epitaxial thin film grown on a structurally dissimilar substrate can depend critically on the first few monolayers of growth. Using examples from metal/III-V semiconductor epitaxy, we illustrate how the overlayer structure and properties depend on the substrate surface reconstruction, the substrate temperature, and the order of deposition. For example, the orientation of a NiAI film grown on the {100}AIAs surface is determined by the composition of the first deposited monolayer. In another example, the nucleation of the bulk metastable phase, τMnAl is favored over the nucleation of the high temperature ∊ phase when the nucleation step occurs at the interface between a thin amorphous Mn-Al template and the AlAs/GaAs substrate. Furthermore, the orientation of the easy magnetic axis of ferromagnetic τMnAl can be controlled by a single monolayer of Mn.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akiyama, M., Kawarada, Y., and Kaminishi, K., J. Crystal Growth 68, 21 (1984).CrossRefGoogle Scholar
2. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 54, 852 (1989).Google Scholar
3. Tung, R. T. and Schrey, F., Appl. Phys. Lett. 55, 256 (1989).Google Scholar
4. Yalisove, S. M., Tung, R. T. and Loretto, D., J. Vac. Sci. Technol. A 6, 1472 (1989).Google Scholar
5. Inam, A., Rogers, C. T., Ramesh, R., Remschnig, K, Farrow, L., Hart, D., Venkatesan, T. and Wilkens, B. J., Appl. Phys. Lett. 57, 2484 (1990).Google Scholar
6. Barner, J. B., Rogers, C. T., Inam, A., Ramesh, R. and Bersey, S., Appl. Phys. Lett. (1991) in press.Google Scholar
7. Sands, T., Palmstrom, C.J., Harbison, J.P., Keramidas, V.G., Tabatabaie, N., Cheeks, T.L., Ramesh, R. and Silberberg, Y., Mater. Sci. Reports 5, 99 (1990).CrossRefGoogle Scholar
8. Ludeke, R., Chang, L. L. and Esaki, L., Appl. Phys. Lett. 23, 201 (1973).Google Scholar
9. Cho, A. Y. and Dernier, P. D., J. Appl. Phys. 49, 3328 (1978).Google Scholar
10. Ludeke, R., J. Vac. Sci. Technol B2, 400 (1984) and references therein.CrossRefGoogle Scholar
11. Massies, J., Delescluse, P., Etienne, P. and Linh, N. T., Thin Solid Films 90, 113 (1982).Google Scholar
12. Farrow, R. F. C., Speriosu, V. S., Parkin, S. S. P., Chien, C., Bravman, J. C., Marks, R. F., Kirchner, P. D., Prinz, G. A. and Jonker, B. T., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M. and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989) p. 281.Google Scholar
13. Chien, C. J., Bravman, J. C., and Farrow, R. F. C., J. Appl. Phys. 68, 4343 (1990).Google Scholar
14. Sands, T., Appl. Phys. Lett. 52, 197 (1988).Google Scholar
15. Wu, A. J., Galvin, G. J., Palmstrom, C. J. and Mayer, J. W., Appl. Phys. Lett. 47, 934 (1985).CrossRefGoogle Scholar
16. Sands, T., Keramidas, V. G., Yu, K. M., Washburn, J. and Krishnan, K., J. Appl. Phys. 62 (1987) 2070.Google Scholar
17. Genut, M. and Eizenberg, M., Appl. Phys. Lett. 50, 1358 (1987).Google Scholar
18. Palmstrom, C. J., Chang, C. C., Yu, A. J., Galvin, G. J. and Mayer, J. W., J. Appl. Phys. 62, 3755 (1987).Google Scholar
19. Lahav, A., Eizenberg, M., and Komem, Y., J. Appl. Phys. 60, 991 (1986).Google Scholar
20. Yu, K. M., Cheung, S. K., Sands, T., Jaklevic, J. M. and Hailer, E. E., J. Appl. Phys. 61, 1099 (1987).Google Scholar
21. Ogawa, M., Thin Solid Films 70, 181 (1980).Google Scholar
22. Guerin, R. and Guivarc'h, A., J. Appl. Phys. 66, 2122 (1989).Google Scholar
23. Zheng, X.-Y., Lin, J.-C., Swenson, D., Hsieh, K.-C. and Chang, Y. A., Mater. Sci. Engin. B 5, 63 (1989).Google Scholar
24. Guerin, R., Deputier, S., Caulet, J., Minier, M., Poudoulec, A., Ballini, Y., Durel, V., Dupas, G. and Guivarc'h, A., in Layered Structures- Heteroepitaxy, Superlattices, Strain, and Metastability, edited by Dodson, B. W., Schowalter, L. J., Cunningham, J. E., and Pollack, F. H. (Mater. Res. Soc. Symp. Proc. 160, Pittsburgh, PA, 1990) pp. 319324.Google Scholar
25. EI-Boragy, M. and Schubert, K., Z. Metallkde. 61, 579 (1970).Google Scholar
26. Sands, T., in Proc. 45th Ann. Meet. Electron Microscopy Soc. Amer., edited by Bailey, G. W. (San Francisco Press, San Fransisco, 1987) pp. 322324.Google Scholar
27. Harbison, J. P., Sands, T., Tabatabaie, N., Chan, W. K., Florez, L. T. and Keramidas, V. G., Appl. Phys. Lett. 53, 1717 (1988).Google Scholar
28. Sands, T., Harbison, J. P., Ramesh, R., Palmstrom, C. J., Florez, L. T., and Keramidas, V. G., Mater. Sci. Engin. B 6, 147 (1990).Google Scholar
29. Sands, T., Harbison, J. P., Chan, W. K., Schwarz, S. A., Chang, C. C., Palmstroom, C. J. and Keramidas, V. G., Appl. Phys. Lett. 52, 1216 (1988).Google Scholar
30. Sands, T., Keramidas, V. G., Yu, A. J., Yu, K.-M., Gronsky, R., and Washburn, J., J. Mater. Res. 2. 262 (1987).Google Scholar
31. Joo, G. C., Tsakalakos, T. and Chen, S. P., Phil. Mag. Lett. 63, 249 (1991).CrossRefGoogle Scholar
32. Joo, G. C., Kalman, Z., Tsakalakos, T., Chen, S. P., Sands, T., Harbison, J. P. and Keramidas, V. G., Scripta Met. (1991) in press.Google Scholar
33. Palmstrom, C. I., B.-O. Fimland, Sands, T., Garrison, K. C. and Bartynski, R. A., J. Appl. Phys. 65, 4753 (1989).Google Scholar
34. Sands, T., Harbison, J.P., Leadbeater, M.L., Allen, S.J. Jr, Hull, G.W., Ramesh, R. and Keramidas, V.G., Appl. Phys. Lett. 57, 2609 (1990).Google Scholar
35. Harbison, J.P., Sands, T., Ramesh, R., Florez, L.T., Wilkens, B.J. and Keramidas, V.G., J. Crystal Growth (1991) in press.Google Scholar
36. Sands, T., Harbison, J. P., Allen, S. I. Jr, Leadbeater, M. L., Cheeks, T. L., Brasil, M. J. S. P., Chang, C. C., Ramesh, R., Florez, L. T., DeRosa, F. and Keramidas, V. G., in Magnetic Thin Films, Multilayers and Surfaces, Proc. of Symposium S, 1991 Spring MRS Meeting, to be published.Google Scholar
37. Kono, H., J. Phys. Soc. Japan 13, 1444 (1958).Google Scholar
38. Morisako, A., Matsumoto, M. and Naoe, M., J. Appl. Phys. 61, 4281 (1987).Google Scholar
39. Leadbeater, M.L., Allen, S.J. Jr, DeRosa, F., Harbison, J.P., Sands, T., Ramesh, R., Florez, L.T. and Keramidas, V.G., J. Appl. Phys. (1991) in press.Google Scholar