Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T18:05:55.494Z Has data issue: false hasContentIssue false

Terahertz-wave generation using graphene

Published online by Cambridge University Press:  15 June 2012

Taiichi Otsuji
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Stephane Boubanga Tombet
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan
Akira Satou
Affiliation:
RIEC, Tohoku University, Sendai, 980-8577, Japan JST-CREST, Tokyo, 102-0075, Japan
Maxim Ryzhii
Affiliation:
CNEL, University of Aizu, Aizu Wakamatsu, 965-8580, Japan JST-CREST, Tokyo, 102-0075, Japan
Victor Ryzhii
Affiliation:
CNEL, University of Aizu, Aizu Wakamatsu, 965-8580, Japan JST-CREST, Tokyo, 102-0075, Japan
Get access

Abstract

In this paper recent advances in terahertz-wave generation in graphene are reviewed. First, fundamental basis of the optoelectronic properties of graphene is introduced. Second, nonequilibrium carrier relaxation and recombination dynamics in optically or electrically pumped graphene is described to introduce a possibility of negative dynamic conductivity in a wide terahertz range. Third, recent theoretical advances toward the creation of current-injection graphene terahertz lasers are described. Fourth, unique terahertz dynamics of the two-dimensional plasmons in graphene are described. Finally, the advantages of graphene materials and devices for terahertz-wave generation are summarized.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Novoselov, K.S, Geim, A.K., Morozov, S.V, Jiang, D, Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Frisov, A.A., Science 306,666 (2004).Google Scholar
2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A., Nature 438, 197 (2005).Google Scholar
3. Kim, P., Zhang, Y., Tan, Y.-W., Stormer, H.L., Nature 438, 201 (2005).Google Scholar
4. Geim, K. and Novoselov, K. S., Nature Mater. 6, 183 (2007).Google Scholar
5. Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A. C., Nature Photon. 4, 611622 (2010).Google Scholar
6. Fujita, M., Wakabayashi, K., Nakada, K., and Kusakabe, K., J. Phys. Soc. Jpn. 65, 1920 (1996).Google Scholar
7. Ando, T., Nakanishi, T., ane Saito, R., J. Phys. Soc. Jpn. 67, 2857 (1998).Google Scholar
8. Saito, R., Takeya, T., Kimura, T., Dresselhoau, G., and Dresselhaus, M.S., Phys. Rev. B 57, 4145 (1998).Google Scholar
9. Wakabayashi, K., Sigrist, M. and Fujita, M., J. Phys. Soc. Jpn. 67, 2089 (1998).Google Scholar
10. Ryzhii, V., Ryzhii, M., and Otsuji, T., J. Appl. Phys. 101, 083114 (2007).Google Scholar
11. Ryzhii, M. and Ryzhii, V., Jpn. J. Appl. Phys. 46, L151 (2007).Google Scholar
12. Ryzhii, V., Ryzhii, M., Mitin, V., and Otsuji, T., J. Appl. Phys. 110, 094503 (2011).Google Scholar
13. Karasawa, H., Komori, T., Watanabe, T., Satou, A., Fukidome, H., Suemitsu, M., Ryzhii, V., and Otsuji, T., J. Infrared Milli. Terahertz Waves 32, 655 (2011).Google Scholar
14. Boubanga-Tombet, S., Chan, S., Watanabe, T., Satou, A., Ryzhii, V., and Otsuji, T., Phys. Rev. B 85, 035443 (2012).Google Scholar
15. Dubinov, A. A., Aleshkin, V. Y., Ryzhii, M., Otsuji, T., and Ryzhii, V., Appl. Phys. Express 2, 092301 (2009).Google Scholar
16. Ryzhii, V., Ryzhii, M., Satou, A., Otsuji, T., Dubinov, A.A. and Aleshkin, V.Y., J. Appl. Phys. 106, 084507 (2009).Google Scholar
17. Ryzhii, V., Dubinov, A., Otsuji, T., Mitin, V., and Shur, M. S., J. Appl. Phys. 107, 054505 (2010).Google Scholar
18. Ryzhii, V., Ryzhii, M., Mitin, V., Satou, A., and Otsuji, T., Jpn. J. Appl. Phys. 50, 094001 (2011).Google Scholar
19. Satou, A., Otsuji, T., Ryzhii, V., Jpn. J. Appl. Phys. 50, 070116 (2011).Google Scholar
20. Satou, A., Boubanga Tombet, S. A., Otsuji, T., and Ryzhii, V., in Dig. OTST: Int. Conf. on Optical Terahertz Science and Technology, OSA, Ed. (2011) p. TuA3.Google Scholar
21. Suzuura, H. and Ando, T., J. Phys. Soc. Jpn. 77, 044703 (2008).Google Scholar
22. Maultzsch, J., Phys. Rev. B 70, 155403 (2004).Google Scholar
23. Dawlaty, J.M., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G., Appl. Phys. Lett. 92, 042116 (2008).Google Scholar
24. George, P. A., Strait, J., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, F. R. M. G., Nano Lett. 8, 4248 (2008).Google Scholar
25. Breusing, M., Ropers, C., and Elsaesser, T., Phys. Rev. Lett. 102, 086809 (2009).Google Scholar
26. Suzuura, H., Ando, T., “Zone-boundary phonon in graphene and nanotube,” J. Phys. Soc. Jpn. 77, 044703 (2008).Google Scholar
27. Rana, F., George, P. A., Strait, J. H., Dawlaty, J., Shivaraman, S., Chandrashekhar, M., and Spencer, M. G., “Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene,” Phys. Rev. B 79, 115447 (2009).Google Scholar
28. de Heera, W.A., Berger, C., Wu, X., First, P.N., Conrad, E.H., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M.L., Potemski, M., Martinez, G.d, Solid State Comm. 143, 92 (2007).Google Scholar
29. Fukidome, H., Takahashi, R., Abe, S., Imaizumi, K., Handa, H., Kang, H.-C., Karasawa, H., Suemitsu, T., Otsuji, T., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T. and Suemitsu, M., J. Mater. Chem. 21, 17242 (2011).Google Scholar
30. Fukidome, H., Abe, S., Takahashi, R., Imaizumi, K., Inomata, S., Handa, H., Saito, E., Enta, Y., Yoshigoe, A., Teraoka, Y., Kotsugi, M., Ohkouchi, T., Kinoshita, T., Ito, S., and Suemitsu, M., Appl. Phys. Express 4, 115104 (2011).Google Scholar
31. Ryzhii, V., Ryzhii, M., and Otsuji, T., Appl. Phys. Express 1, 013001 (2008).Google Scholar
32. Ryzhii, V., Satou, A. and Otsuji, T., J. Appl. Phys. 101, 024509 (2007).Google Scholar
33. Popov, V. V., Bagaeva, T. Yu., Otsuji, T., and Ryzhii, V., Phys. Rev. B 81, 073404 (2010).Google Scholar
34. Fukushima, T., Chan, S., Boubanga Tombet, S., Ryzhii, V., Popov, V., Otsuji, T., in Dig. QNN: International Workshop on Quantum Nanostructure & Nanoelectronics, (2011) p. P-24.Google Scholar
35. Ju, L., Geng, B., Horng, Jason, Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Ron Shen, Y., and Wang, F., Nature Nanotech. 6, 630 (2011); F. Rana, ibid, 611(2011).Google Scholar
36. Nikitin, A. Yu., Guinea, F., Garcia-Vidal, F. J., and Martin-Moreno, L., Phys. Rev. B 85, 081405(R) (2012).Google Scholar
37. Dubinov, A.A., Aleshkin, Y.V., Mitin, V., Otsuji, T., and Ryzhii, V., J. Phys.: Condens. Matter 23, 145302 (2011).Google Scholar
38. Takatsuka, Y., Sano, E., Ryzhii, V., and Otsuji, T, Jpn. J. Appl. Phys. 50, 070118 (2011).Google Scholar