Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T10:17:51.146Z Has data issue: false hasContentIssue false

Theoretical Calculations on Nonlinear Susceptibilities of Organic Crystals

Published online by Cambridge University Press:  25 February 2011

Yuzo Itoh
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 4026 Kuji-cho, Hitachi, Ibaraki, 319–12, Japan
Tomoyuki Hamada
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 4026 Kuji-cho, Hitachi, Ibaraki, 319–12, Japan
Atsushi Kakuta
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 4026 Kuji-cho, Hitachi, Ibaraki, 319–12, Japan
Akio Mukoh
Affiliation:
Hitachi Research Laboratory, Hitachi Ltd., 4026 Kuji-cho, Hitachi, Ibaraki, 319–12, Japan
Get access

Abstract

Theoretical calculations on nonlinear susceptibilities of organic crystals are made. Under the oriented gas model approximation, nonlinear susceptibility of a crystal can be calculated both from the molecular hyperpo1arizability and crystal structure data. Molecular hyperpolarizabilities are calculated by an ab initio molecular orbital (MO) method and the energy minimum crystal structures are obtained by an empirical atom-atom pairwise potential method. Finally the effect of intermolecul ar interactions on molecular hyperpolarizabilities, which is neglected in the above approximation, is investigated quantitatively by using a “super molecule” method of ab initio MO calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Agrawal, G. P. and Flytzanis, C., Chem. Phys. Lett. 44, 366 (1976).Google Scholar
2. Cojan, C. C., Agrawal, G. P., and Flytzanis, C., Phys. Rev. B15.909 (1977).Google Scholar
3. Agrawal, G. P., Cojan, C., and Flytzanis, C., Phys. Rev. B17, 776 (1978).Google Scholar
4. Mclntyre, E. F. and Hameka, H. F., J. Chem. Phys. 68, 3481 (1978).Google Scholar
5. Zamani-Khamiri, O., McIntyre, E. F., and Hameka, H. F., J. Chem. Phys. 72, 5906 (1980).CrossRefGoogle Scholar
6. Zyss, J., J. Chem. Phys. 70, 3333 (1979).Google Scholar
7. Zyss, J. and Berthier, G., J. Chem. Phys. 77, 3635 (1982).Google Scholar
8. Lalama, S. J. and Garito, A. F., Phys. Rev. A20, 1179 (1979).Google Scholar
9. Garito, A. F., Heflin, J. R., Wong, K. Y., and Zamani-Khamiri, O., in Nonlinear Optical Properties of Po1ymers, edited by Heeger, A. J., Orenstein, J., and Ulrich, D. R. (Mater. Res. Soc. Proc. 109, Pittsburgh, PA 1988).Google Scholar
10. Papadopoulos, M. G., Waite, J., and Nicolaides, C. A., J. Chem. Phys. 77, 2527 (1982).Google Scholar
11. Waite, J. and Papadopoulos, M. G., J. Chem. Phys. 82, 1427 (1985).Google Scholar
12. Docherty, V. J., Pugh, D., and Morley, J. O., J. Chem. Soc, Farady Trans. II 81, 1179 (1985).Google Scholar
13. Morley, J. O., J. Chem. Soc, Perkin Trans. II 1351 (1987); ibid., 103 (1989).Google Scholar
14. Svendsen, E. M., Willand, C. S., and Albrecht, A. C., J. Chem. Phys. 83, 5760 (1985).Google Scholar
15. Li, D., Marks, T. J., and Ratner, M. A., Chem. Phys. Lett. 131, 370 (1986).Google Scholar
16. DeMelo, C. P. and Silbey, R., Chem. Phys. Lett. 140, 537 (1987).Google Scholar
17. Andre, J.-M., Barbier, C., Bodart, V., and Delhalle, J., in Nonlinear Optical Properties of Organic Molecules and Crysta1s, Vol. 2 edited by Chemla, D. S. and Zyss, J. (Academic Press, New York, 1987) p. 137 Google Scholar
18. Kirtman, B., Chem. Phys. Lett., 143, 81 (1988).Google Scholar
19. Hurst, G. J. B., Dupuis, M., and Clementi, E., J. Chem. Phys. 89, 385 (1988).Google Scholar
20. Dirk, C. W. and Kuzyk, M. G., Phys. Rev. A39, 1219 (1989).Google Scholar
21. Cohen, H. D. and Roothaan, C. C. J., J. Chem. Phys. 43, 534 (1965).Google Scholar
22. Pulay, P., J. Chem. Phys. 78, 5043 (1983).Google Scholar
23. Dupuis, M., Watts, J. D., Villar, H. O., and Hurst, G. J. B., QCPE No. 544, modified for Hitachi M682H and S820 systems by the present authors.Google Scholar
24. Binkley, J. S., Whiteside, R. A., Krishnan, R., Seeger, R., DeFrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R., and Pople, J. A., GAUSSIAN 80, QCPE No. 500 modified for M680H and S820 systems by the present authors.Google Scholar
25. Ledoux, I. and Zyss, J., Chem. Phys. 73, 203 (1982).CrossRefGoogle Scholar
26. Teng, C. C. and Garito, A. F., Phys. Rev. B28, 6766 (1983).Google Scholar
27. Topiol, S. and Moskowitz, J. W., J. Chem. Phys. 70 3008 (1979).CrossRefGoogle Scholar
28. Itoh, Y., Ohno, K., Isogai, M., and Kakuta, A., Mol. Cryst. Liq. Cryst. 170, 259 (1989).Google Scholar
29. Berkert, U., Allinger, N.L., Molecular Mechanics, (Am. Chem. Soc, Washington,D.C., 1982).Google Scholar
30. Williams, D. E., Acta Cryst. 27, 133 (1978).Google Scholar
31. Kitaigorodsky, A. I., Chem. Soc. Rev. 7, 253 (1952).Google Scholar
32. Ewald, P. P., Ann. Phisik. 64, 253 (1952).Google Scholar
33. Libscomb, G. F., Garito, A. F., and Narang, R. S., J. Chem. Phys. 75, 1509 (1981).Google Scholar
34. Trueblood, K. N., Goldish, E., and Donohue, J., Acta Cryst. 14, 1009 (1961).CrossRefGoogle Scholar
35. Biswas, S. C. and Sen, R. K., Ind. Pure & Appl. Phys. 20, 414 (1982).Google Scholar
36. Cox, S. R. and Williams, D. E., J. Comput. Chem. 2, 304 (1981).Google Scholar
37. Sardo, J. A., Sardo, T. L., Fenandez, G. M., Gomperts, R., Chin, S., and Clementi, E., J. Chem Phys. Pb90Pb, 6361 (1989).Google Scholar
38. Boys, S. F. and Bernardi, F., Mol. Phys. 19, 553 (1970).Google Scholar
39. Czekalla, J. and Wick, G., Electrochem, Z.., Ber. Bunsenges. Physik. Chem. 65, 727 (1961).Google Scholar