Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-20T02:41:17.870Z Has data issue: false hasContentIssue false

Theoretical scheme for the study of thermodynamic and transport properties of simple fluids at the liquid-glass transition line.

Published online by Cambridge University Press:  11 February 2011

M. Robles
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, AP 34, Temixco, Mor. CP 62580, México.
L. I. Uruchurtu
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, AP 34, Temixco, Mor. CP 62580, México.
M. López de Haro
Affiliation:
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, AP 34, Temixco, Mor. CP 62580, México.
Get access

Abstract

In this work we present a theoretical scheme to study the thermodynamic and transport properties of simple fluids at the liquid-glass transition line. This scheme makes use of a recent reformulation of the classical perturbation theory of liquids [M. Robles and M. López de Haro, Phys. Chem. Chem. Phys. 3, 5528 (2001)]. Using the hard-sphere fluid as a reference system our approach requires the choice of an equation of state for the hard-sphere system and a criterion to determine an effective (density and temperature dependent) diameter. Selecting the diameter in the same way as in the Mansoori-Canfield /Rasaiah-Stell variational perturbation theory and two different equations of state for the hard-sphere system, the liquid-glass transition line in the density vs. temperature plane for a Lennard-Jones fluid derived with our approach is shown to be in very good agreement with recent numerical simulations. The transition line in the pressure vs density plane and the value of the transport coefficients in the vicinity of the liquid-glass transition for the Lennard-Jones fluid are also examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bengtzelius, U., Phys. Rev. A 33, 3433 (1986).Google Scholar
2. Mézard, M. and Parisi, G., J. Phys.: Condens. Matter 12, 6655 (2000).Google Scholar
3. Adams, G. and Gibbs, J. H., J. Chem. Phys 43, 139 (1965).Google Scholar
4. Gibbs, J. H. and Di Marzio, E. A., J. Chem. Phys 28, 373 (1958).Google Scholar
5. Wendt, H. R. and Abraham, F. F., Phys. Rev. Lett. 41, 1244 (1978).Google Scholar
6. Abraham, F. F., J. Chem. Phys. 72, 359 (1980).Google Scholar
7. Di Leonardo, R., Angelani, L., Parisi, G., and Ruocco, G., Phys. Rev. Lett. 84, 6054 (2000).Google Scholar
8. Hudson, S. and Anderssen, H. C., J. Chem. Phys. 69, 2323 (1978).Google Scholar
9. Speedy, R. J., J. Chem. Phys. 100, 6684 (1994).Google Scholar
10. Baeyens, B. and Verschelde, H., Z. Phys. B 102, 255 (1997).Google Scholar
11. Robles, M., López de Haro, M., Santos, A., and Bravo Yuste, S., J. Chem. Phys. 108, 1290 (1998).Google Scholar
12. Speedy, R. J., Mol. Phys. 95, 169 (1998).Google Scholar
13. van Megen, W. and Underwood, S. M., Nature 362, 616 (1993).Google Scholar
14. van Megen, W., Mortensen, T. C., Williams, S. R., and Müller, J., Phys. Rev. E. 58, 6073 (1998).Google Scholar
15. Chapman, S. and Cowling, T. G., The mathematical theory of non-uniform gases, 3rd ed. (Cambridge University Press, UK, 1970).Google Scholar
16. Robles, M. and López de Haro, M., Phys. Chem. Chem. Phys. 3, 5528 (2001).Google Scholar
17. Barker, J. A. and Henderson, D., J. Chem. Phys. 47, 2856 (1967).Google Scholar
18. Mansoori, G. A. and Canfield, F. B., J. Chem. Phys. 51, 4958 (1969).Google Scholar
19. Rasaiah, J. and Stell, G., Mol. Phys. 18, 249 (1970).Google Scholar
20. Weeks, J. D., Chandler, D., and Andersen, H. C., J. Chem. Phys. 54, 5237 (1971).Google Scholar
21. Bravo Yuste, S. and Santos, A., Phys. Rev. A 43, 5418 (1991).Google Scholar
22. Robles, M. and López de Haro, M., J. Chem. Phys. 107, 4648 (1997).Google Scholar
23. Hansen, J. P. and Verlet, L., Phys. Rev. 184, 151 (1969).Google Scholar
24. E. van Rensburg, J. J., J. Phys. A 26, 4805 (1993).Google Scholar
25. Carnahan, N. F. and Starling, K. E., J. Chem. Phys. 51, 635 (1969).Google Scholar
26. Bravo Yuste, S., López de Haro, M., and Santos, A., Phys. Rev. E 53, 4820 (1996).Google Scholar
27. Ullo, J. J. and Yip, S., Phys. Rev. Lett. 54, 1509 (1983).Google Scholar
28. Borgelt, P., Hoheisel, C., and Stell, G., Phys. Rev. A 42, 789 (1990).Google Scholar
29. Heyes, D. M., J. Chem. Soc. Faraday Trans II 79, 1741 (1983).Google Scholar
30. Heyes, D. M., J. Chem. Soc. Faraday Trans II 80, 1363 (1984).Google Scholar