Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:43:17.446Z Has data issue: false hasContentIssue false

Theoretical Studies of Spectral Properties of Plutonium

Published online by Cambridge University Press:  01 February 2011

Jian-Xin Zhu
Affiliation:
jxzhu@lanl.gov, Los Alamos National Laboratory, T-11, Theoretical Division, MS B262, Los Alamos, NM, 87545, United States, (505) 6672363, (505) 6654103
A.K. McMahan
Affiliation:
mcmahan4@llnl.gov, Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
M.D. Jones
Affiliation:
jonesm@ccr.buffalo.edu, University at Buffalo, SUNY, Buffalo, NY, 14260, United States
T. Durakiewicz
Affiliation:
tomasz@lanl.gov, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
J.J. Joyce
Affiliation:
jjoyce@lanl.gov, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
J.M. Wills
Affiliation:
jxw@lanl.gov, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
R.C. Albers
Affiliation:
rca@lanl.gov, Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
Get access

Abstract

By combining the local density approximation (LDA) with dynamical mean field theory (DMFT), we report a systematic analysis of the spectral properties of δ-plutonium with varying 5f occupancy. The LDA Hamiltonian is extracted from a tight-binding (TB) fit to full-potential linearized augmented plane-wave (FP-LAPW) calculations. The DMFT equations are solved by the exact quantum Monte Carlo (QMC) method and the Hubbard-I approximation. We show the strong sensitivity of the spectral properties to the 5f occupancy, which suggests using this occupancy as a fitting parameter in addition to the Hubbard U. By comparing with PES data, we conclude that the “open shell” 5f5 configuration gives the best agreement, resolving the controversy over 5f “open shell” versus “close shell” atomic configurations in δ-Pu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Challenges in Plutonium Science, edited by Cooper, N. G. special issue of Los Alamos Sci. 26 (2000).Google Scholar
[2] Jones, M. D. et al. , Phys. Rev. B 61, 4644 (2000).10.1103/PhysRevB.61.4644Google Scholar
[3] Bouchet, J. et al. , J. Phys.: Condens. Matter 12, 1723 (2000); S. Y. Savrasov and G. Kotliar Phys. Rev. Lett. 84, 3670 (2000).Google Scholar
[4] Shick, A. et al. , Europhys. Lett. 77, 17003 (2007).Google Scholar
[5] Shim, J.H. Haule, K. and Kotliar, G. Nature 446, 513 (2007).Google Scholar
[6] Zhu, Jian-Xin et al. , Phys. Rev. B 76, 245118 (2007).Google Scholar
[7] Pourovskii, L.V. et al. , Phys. Rev. B 75, 235107 (2007).Google Scholar
[8] Jones, M. D. and Albers, R. C. Phys. Rev. B 66, 134105 (2002).Google Scholar
[9] McMahan, A. K. Phys. Rev. B 72, 115125 (2005).10.1103/PhysRevB.72.115125Google Scholar
[10] Jarrell, M. and Gubernatis, J. E. Phys. Rep. 269, 133 (1996).Google Scholar
[11] Wills, J. M. et al. , J. Electron Spect. and Rel. Phenom. 135, 163 (2004).Google Scholar
[12] Gerken, F. and Schmidt-May, S., J. Phys. F: Met. Phys. 13, 1571 (1983).Google Scholar
[13] Gouder, T et al. , Phys. Rev. Lett. 84, 3378 (2000); Europhys. Lett. 55, 705 (2001).Google Scholar
[14] Havela, L. et al. , Phys. Rev. B 65, 235118 (2002); ibid. 68, 085101 (2003).Google Scholar
[15] Durakiewicz, T. et al. , Phys. Rev. B 70, 205103 (2004).Google Scholar
[16] Gouder, T. et al. , Phys. Rev. B 71, 165101 (2005).Google Scholar