Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:37:39.533Z Has data issue: false hasContentIssue false

Theoretical Study of the Magnetic Anisotropy of Ni Films on Cu(001)

Published online by Cambridge University Press:  15 February 2011

M. Freyss
Affiliation:
Institut de Physique et de Chimie des Matériaux de Strasbourg, Groupe d'Etude des Matériaux Métalliques, 23 rue du Loess, 67037 Strasbourg, France.
R. Lorenz
Affiliation:
Institut für theorische Physik, Technische Universität Wien, Wiedner Haupstrasse 8–10/136, 1040 Wien, Austria.
H. Dreysse
Affiliation:
Institut de Physique et de Chimie des Matériaux de Strasbourg, Groupe d'Etude des Matériaux Métalliques, 23 rue du Loess, 67037 Strasbourg, France.
J. Hafner
Affiliation:
Institut für theorische Physik, Technische Universität Wien, Wiedner Haupstrasse 8–10/136, 1040 Wien, Austria.
Get access

Abstract

The anisotropy properties of Ni films on Cu(001) are quite unusual compared to other systems: The magnetization direction of Ni is in-plane for a coverage smaller than a critical thickness of 7 monolayers and out-of-plane for a coverage larger than 7 monolayers. As a first step in the study of this unusual behaviour, we report results of ab-initio calculations of the magnetic order of Ni films on a Cu(001) substrate. The magnetic moments are computed by means of the real-space Tight-Binding LMTO method allowing non-collinear magnetic moments and including spin-orbit coupling to account for magnetic anisotropy effects. As the number of Ni layers is increased, we discuss the stability of the system with a magnetization in-plane or out-of-plane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Qui, Z.Q., Pearson, J., Bader, S.D., Phys. Rev. Lett. 70, 1006 (1993).Google Scholar
[2] Allensbach, R., Bishof, A., Phys. Rev. Lett. 69, 3385 (1992).Google Scholar
[3] Thomassen, J., may, F., Feldmann, B., Wuttig, M., Ibach, H., Phys. Rev. Lett. 69 3831 (1992).Google Scholar
[4] Allensbach, R., Stampanoni, M., Bishof, A., Phys. Rev. Lett. 65, 3344 (1990).Google Scholar
[5] Chappert, C., Le Dang, K., Beauvillain, P., Hurdequint, H., Renard, D., Phys. Rev. B 34, 3192 (1986).Google Scholar
[6] O'Brien, W.L, Doubray, T., Tonner, B.P., Phys. Rev. B 54, 9297 (1996).Google Scholar
[7] Farle, M., Mirwald-Schulz, B., Anisimov, A.N., Platów, W., Baberschke, K., Phys. Rev. B 55, 3708 (1997).Google Scholar
[8] Schulz, F., Baberschke, K., Phys. Rev. B 50, 13467 (1994).Google Scholar
[9] Huang, F., Kief, M.T., Mankey, G.J., Willis, R.F., Phys. Rev. B 49, 49, 3962 (1994).Google Scholar
[10] Baberschke, K., Appl. Phys. A62, 417 (1996).Google Scholar
[11] Bochi, G., Ballentine, C.A., Inglefield, H.E., Thompson, C.V., O'Handley, R.C., Phys. Rev. B 53, 1729 (1996).Google Scholar
[12] Blügel, S., Phys. Rev. Lett. 68, 851 (1992).Google Scholar
[13] Hjortstam, O., Trygg, J., Wills, J.M., Johansson, B., Eriksson, O., Phys. Rev. B 53, 9204 (1996).Google Scholar
[14] Lorenz, R., Hafner, J., Phys. Rev. B 54, 15937 (1996).Google Scholar