Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T14:44:44.205Z Has data issue: false hasContentIssue false

Theory of Ga, N and H terminated GaN (0001)/(0001) surfaces

Published online by Cambridge University Press:  10 February 2011

J. Eisner
Affiliation:
Technische Universität Chemnitz, Theoretische Physik III, D – 09107 Chemnitz, Germany
M. Haugk
Affiliation:
Technische Universität Chemnitz, Theoretische Physik III, D – 09107 Chemnitz, Germany
R. Gutierrez
Affiliation:
Technische Universität Chemnitz, Theoretische Physik III, D – 09107 Chemnitz, Germany
Th. Frauenheim
Affiliation:
Technische Universität Chemnitz, Theoretische Physik III, D – 09107 Chemnitz, Germany
Get access

Abstract

We present a theoretical study of atomic structures, electrical properties and formation energies for a variety of possible reconstructions with 1×1 and 2×2 periodicity of the GaN(0001) and (0001) surfaces. We find that during MBE growth in the (0001) direction 2×2 structures become stable under N rich growth conditions while Ga rich environment should yield structures with 1×1 periodicity. Considering MBE growth on (0001) surfaces, among the investigated structures only those with 1×1 periodicity are predicted to be stable. During MOCVD growth, where H terminated surfaces may occur, only structures with lx1 periodicity are found to be stable for both growth directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ponce, F.A., Bour, D.P., Young, W.T., Saunders, M., and Steeds, J.W., Appl. Phys. Lett. 69, 337 (1996).Google Scholar
2. Sung, M.M., Ahn, J., Bykov, V., Raballais, J.W., Koleske, D.D., and Wickenden, A.E., Phys. Rev. B 54, 14652 (1996).Google Scholar
3. Iwata, K., Asahi, H., Yu, S. Jae, Asami, K., Fujita, H., Fushida, M., and Gonda, S., Jpn. J. Appl. Phys. 35, L289 (1996).Google Scholar
4. Hacke, P., Feuillet, G., Okumura, H., Yoshida, S., Appl. Phys. Lett. 69, 2507 (1996).Google Scholar
5. Hacke, P., Feuillet, G., Okumura, H., Yoshida, S., J. Crystal Growth 175, 94 (1997).Google Scholar
6. Northrup, J. E., and Neugebauer, J., Phys. Rev. B 53, 10477 (1996).Google Scholar
7. Murnaghan, F. D., Proc. Natl. Acad. Sci. USA 30, 244 (1944).Google Scholar
8. Porezag, D., Frauenheim, Th. and Köhler, Th., Phys. Rev. B51, 12947 (1995).Google Scholar
9. Elstner, M., Porezag, D., Jungnickel, G., Frauenheim, Th., Shuhai, S. and Seifert, G. submitted to Europhys. Lett.Google Scholar
10. Eisner, J., Jones, R., Sitch, P.K. et al., Phys. Rev. Lett. 79 3672 (1997).Google Scholar
11. Qian, G.-X., Martin, R. M., and Chadi, D. J., Phys. Rev. B 38 (1988) 7649.Google Scholar
12. CRC Handbook of Chemistry and Physics, 67 ed., edited by West, R.C. (CRC, Boca Raton, FL, 1986).Google Scholar
13. Kittel, C., Thermal Physics (Wiley, New York, 1969).Google Scholar
14. Northrup, J.E., Felice, R. Di, and Neugebauer, J., Phys. Rev. B 56, R4325 (1997).Google Scholar
15. Moll, N., Kley, A., Pehlke, E., and Scheffler, M., Phys. Rev. B 54, 8844 (1996).Google Scholar
16. Haugk, M., Elsner, J. and Frauenheim, Th., J. Phys. Condens. Matter 9, 7305 (1997).Google Scholar
17. Tong, S.Y., Xu, G., and Mei, W.N., Phys. Rev. Lett. 52, (1984) 1693.Google Scholar
18. Kaxiras, E., Pandey, K.C., Bar-Yam, Y., and Joannopoulos, J. D., Phys. Rev. Lett. 56, 2819 (1986).Google Scholar
19. Biegelsen, D.K., Bringans, R.D., Northrup, J.E., and Schwartz, L.E., Phys. Rev. B 41, 5701 (1990).Google Scholar
20. Northrup, J.E., Felice, R. Di, and Neugebauer, J., Phys. Rev. B 55, 13878 (1997).Google Scholar
21. Smith, A.R., Feenstra, R.M., Greve, D.W., Neugebauer, J. and Northrup, J.E., Phys. Rev. Lett. 79, 3934 (1997).Google Scholar