Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T19:26:52.852Z Has data issue: false hasContentIssue false

Theory of Schottky-Contact Formation on GaAs (110)

Published online by Cambridge University Press:  26 February 2011

K. B. Kahen*
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650–2011
Get access

Abstract

A phenomenological theory of Schottky contact formation to GaAs (110) surfaces at room temperature is discussed. The theory splits into two regimes, low- and high-metal coverages. In the low-coverage regime the movement of the Fermi level is proposed to occur because of universal derelaxation of the GaAs (110) surface. For large metal depositions, the resulting barrier heights are hypothesized to be determined by the interaction of either free (not involved in compound formation with other species) metal or free As with the GaAs surface region. It is shown that based on simple considerations of the relative enthalpy of metal-arsenide formation, it is possible to decide which species is responsible for the barrier height and, thus, to account for the majority of barrier heights to the GaAs (110) surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Monch, W., J. Vac. Sci. Technol. B6, 1270 (1988).CrossRefGoogle Scholar
2. McLean, A. B. and Williams, R. H., J. Phys. C21, 783 (1988).Google Scholar
3. McGilp, J. F. and McLean, A. B., J. Phys. C21, 807 (1988).Google Scholar
4. Kahen, K. B., Phys. Rev. B43, 11745 (1991).CrossRefGoogle Scholar
5. Chadi, D. J. and Bachrach, R. Z., J. Vac. Sci. Technol. 16, 1159 (1979).CrossRefGoogle Scholar
6. Ford, W. K., Guo, T., Lantz, S. L., Wan, K., Chang, S.-L., Duke, C. B., and Lessor, D. L., J. Vac. Sci. Technol. B8, 940 (1990).CrossRefGoogle Scholar
7. Kahn, A., So, E., Mark, P., Duke, C. B., and Meyer, R. J., J. Vac. Sci. Technol. 15, 1223 (1978).CrossRefGoogle Scholar
8. Feenstra, R. M. and Martensson, P., Phys. Rev. Lett. 61, 447 (1988).CrossRefGoogle Scholar
9. Brugger, H., Schaffler, F., and Abstreiter, G., Phys. Rev. Lett. 52, 141 (1984).CrossRefGoogle Scholar
10. Stiles, K., Kahn, A., Kilday, D. G., and Margaritondo, G., J. Vac. Sci. Technol. B5, 987 (1987).CrossRefGoogle Scholar
11. Kahn, A., J. Vac. Sci. Technol. Al, 684 (1983).Google Scholar
12. Kahn, A., Kanani, D., and Mark, P., Surf. Sci. 94, 547 (1980).CrossRefGoogle Scholar
13. Viturro, R. E., Slade, M. L., and Brillson, L. J., Phys. Rev. Lett. 57, 487 (1986).CrossRefGoogle Scholar
14. Hill, D. M., Xu, F., Lin, Z., and Weaver, J. H., Phys. Rev. B38, 1893 (1988).CrossRefGoogle Scholar
15. Vitomirov, I. M., Aldao, C. M., Lin, Z., Gao, Y., Trafas, B. M., and Weaver, J. H., Phys. Rev. B38, 10776 (1988).CrossRefGoogle Scholar
16. Xu, F., Joyce, J. J., Ruckman, M. W., Chen, H. W., Boscherini, F., Hill, D. M., Chambers, S. A., and Weaver, J. H., Phys. Rev. B35, 2375 (1987).CrossRefGoogle Scholar
17. Chambers, S. A., Xu, F., Chen, H. W., Vitomirov, I. M., Anderson, S. B., and Weaver, J. H., Phys. Rev. B34, 6605 (1986).CrossRefGoogle Scholar
18. Grioni, M., Joyce, J. J., and Weaver, J. H., J. Vac. Sci. Technol. A3, 918 (1985).CrossRefGoogle Scholar