Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T02:49:29.490Z Has data issue: false hasContentIssue false

Thermal Conductivity of Zn4−xCdxSb3 Solid Solutions

Published online by Cambridge University Press:  15 February 2011

T. Caillat
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
A. Borshchevsky
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
J. -P. Fleurial
Affiliation:
Jet Propulsion Laboratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109
Get access

Abstract

β-Zn4Sb3 was recently identified at the Jet Propulsion Laboratory as a new high performance p-type thermoelectric material with a maximum dimensionless thermoelectric figure of merit ZT of 1.4 at a temperature of 673K. A usual approach, used for many state-of-the-art thermoelectric materials, to further improve ZT values is to alloy β-Zn4Sb3 with isostructural compounds because of the expected decrease in lattice thermal conductivity. We have grown Zn4−xCdxSb3 crystals with 0.2≤x<1.2 and measured their thermal conductivity from 10 to 500K. The thermal conductivity values of Zn4−xCdxSb3 alloys are significantly lower than those measured for β-Zn4Sb3 and are comparable to its calculated minimum thermal conductivity. A strong atomic disorder is believed to be primarily at the origin of the very low thermal conductivity of these materials which are also fairly good electrical conductors and are therefore excellent candidates for thermoelectric applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Caillat, T., Fleurial, J.-P., and Borshchevsky, A. in Proceedings of the XV International Conference on Thermoelectrics, edited by Caillat, T. (IEEE Catalog No. 96TH8169, Pasadena, CA 1996) pp. 151154.Google Scholar
2. Caillat, T., Fleurial, J.-P., and Borshchevsky, A., J. Phys. Chem. Solids, in press (1997).Google Scholar
3. Ugai, Ya. A., Marshakova, T. A., Shevchenko, V. Ya., and Demina, N. P., Inorganic Materials 5, 1180 (1969).Google Scholar
4. Caillat, T., Fleurial, J.-P., and Borshchevsky, A., J. Cryst. Growth 166, 722 (1996).Google Scholar
5. Vandersande, J. W., Wood, C., Zoltan, A., and Whittenberger, D., Thermal Conductivity, Plenum Press, New York, p. 445 (1988).Google Scholar
6. Morelli, D. T., Phys. Rev. 44, 5453 (1991).Google Scholar
7. Caillat, T., Fleurial, J. -P., and Borshchevsky, A., J. Appl. Phys. 11, 8419 (1996).Google Scholar
8. Tydlitat, V., Czech. J. Phys. 9, 638 (1959).Google Scholar
9. Shevchenko, V. Ya., Skirpin, V. A., Ugai, Ya. A., and Marshakova, T. A., Inorganic Materials 4, 1193 (1968).Google Scholar
10. Callaway, J. and Baeyer, H. C. Von, Phys. Rev. 120, 4, 1149 (1960).Google Scholar
11. Borshchevsky, A., Caillat, T., and Fleurial, J.-P., and in Proceedings of the XV International Conference on Thermoelectrics, edited by Caillat, T. (IEEE Catalog No. 96TH8169, Pasadena, CA 1996) pp. 112116.Google Scholar
12. Slack, G. A., in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic, New York, 1979), Vol.34, p. 1.Google Scholar
13. Cahill, D. G., Watson, S. K., and Pohl, R. O., Phys. Rev. 46, 6131 (1992).Google Scholar
14. Morelli, D. T. and Meisner, G. P., J. Appl. Phys. 77, 3777 (1995).Google Scholar
15. Nolas, G. S., Slack, G. A., Morelli, D. T., Tritt, T. M., and Ehrlich, A. C., J. Appl. Phys. 79, 4002 (1996).Google Scholar
16. Sales, B. C., Mandrus, D., and Williams, R. K., Science 272, 1352 (1996).Google Scholar
17. Chen, B., Xu, J. -H., Uher, C., Morelli, D. T., Meisner, G. P., Fleurial, J. -P., Caillat, T., and Borshchevsky, A., Phys. Rev. B 55, 1476 (1997).Google Scholar
18. Mayer, H. W., Mikhail, I., und Schubert, K., Journal of the Less-Commom Metals 59, 43 (1978).Google Scholar
19. Tapiero, M., Tarabichi, S., Gies, J. G., Noguet, C., Zielinger, J. P., Joucla, M., Loison, J., Robino, M., and Henrion, J., Solar Energy Materials 12, 257 (1985).Google Scholar
20. Zaslavskii, I., Sergeeva, V. M., and Smirnov, I. A., Soviet Physics Solid State 2, 11, 2565 (1961).Google Scholar