Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T11:33:05.965Z Has data issue: false hasContentIssue false

Thermal Stability of Pt, Pd, and Ni on GaN

Published online by Cambridge University Press:  10 February 2011

K. J. Duxstad
Affiliation:
Dept. of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720 Lawrence Berkeley National Laboratory, Berkeley, CA 94720
E. E. Haller
Affiliation:
Dept. of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720 Lawrence Berkeley National Laboratory, Berkeley, CA 94720
K.M. Yu
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M. T. Hirsch
Affiliation:
Dept. of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720 Lawrence Berkeley National Laboratory, Berkeley, CA 94720
W. R. Imler
Affiliation:
Hewlett-Packard Company, San Jose, CA
D. A. Steigerwald
Affiliation:
Hewlett-Packard Company, San Jose, CA
F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
L. T. Romano
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA
Get access

Abstract

The development of reliable Ohmic and Schottky contacts on GaN will require an understanding of the thermal stability and metallurgy of metal-GaN contact structures. We investigated the behavior of Pt, Pd, and Ni on GaN as a function of annealing temperature. Rutherford backscattering spectrometry, x-ray diffraction, and scanning electron microscopy were used to characterize the interface and surface behavior. 800Å thin metal films were deposited by sputtering on 2μm GaN films grown by metal organic chemical vapor deposition on sapphire substrates. No reactions occur in the Pt, Pd, and Ni systems with annealing up to 800°C. The Pt film begins to form submicron spheres and islands after annealing above 600°C. The Pd and Ni films begin to island with annealing above 700°C. Below these temperatures no structural changes were observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Mukai, T., and Senoh, M., Jpn. J. Appl. Phys. 30, L1998 (1991).Google Scholar
2 Guo, J. D., Feng, M. S., Guo, R. J., Pan, F. M., and Chang, C. Y., Appl. Phys. Lett. 67, 2657 (1995).Google Scholar
3 Mohammad, S. N., Fan, Z., Botchkarev, A. E., Kim, W., Aktas, O., Salavador, A., and Morkoc, H., Electron. Lett. 32, 598 (1996).Google Scholar
4 Wang, L., Nathan, M. I., Lim, T.-H., Khan, M. A., and Chen, Q., Appl. Phys. Lett. 68, 1267 (1996).Google Scholar
5 Kalinina, E. V., Kuznetsov, N. I., Dmitriev, V. A., Irvine, K. G., and Carter, J. C.H., Journal of Electronic Materials 25, 831 (1996).Google Scholar
6 Schmitz, A. C., Ping, A. T., Khan, M. A., and Adesida, I., in Schottky barrier heights of Ni, Pt, Pd, and Au on n-type GaN, Boston, 1995 (MRS), p. 831.Google Scholar
7 Mohney, S. E. and Lin, X., Journal of Electronic Materials 25, 811 (1996).Google Scholar
8 Duxstad, K. J., Haller, E. E., and Yu, K. M., submitted to Journal of Applied Physics (1996).Google Scholar
9 Cawley, J. D., in Metal-Ceramic Joining, edited by Kumar, P. and Greenhut, V. A. (TMS, 1991), p. 3.Google Scholar
10 Maskell, W. C., Sammes, N. M., and Steele, B. C. H., Journal of Physics D: Applied Physics 20, 99 (1987).Google Scholar
11 Peddada, R., Sengupta, K., Robertson, I. M., and Birnbaum, H. K., in Metal-Ceramic Interfaces; Vol. 4, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Flirth, J. P. (Pergamon Press, New York, 1990), p. 115.Google Scholar
12 Ping, A. T., Khan, M. A., and Adesida, I., Journal of Electronic Materials 25, 819 (1996).Google Scholar