Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-21T19:22:50.549Z Has data issue: false hasContentIssue false

Thermally Driven Shape Instability of Multilayer Structures

Published online by Cambridge University Press:  21 February 2011

P. Troche
Affiliation:
Institut für Materialphysik, Universität Göttingen, Hospitalstr. 3-7, D-37073 Göttingen, troche(a)gwdg.de
J. Hoffmann
Affiliation:
Institut für Materialphysik, Universität Göttingen, Hospitalstr. 3-7x, D-37073 Göttingen
C. Herweg
Affiliation:
Institut für Materialphysik, Universität Göttingen, Hospitalstr. 3-7x, D-37073 Göttingen
CH. Lang
Affiliation:
Institut für Materialphysik, Universität Göttingen, Hospitalstr. 3-7x, D-37073 Göttingen
H.C. Freyhardt
Affiliation:
Institut für Materialphysik, Universität Göttingen, Hospitalstr. 3-7x, D-37073 Göttingen
D. Rudolph
Affiliation:
Institut für Rdntgenphysik, Universität Göttingen, Geiststralße 3, D-37073 Göttingen
Get access

Abstract

The thermally induced shape instability of Fe/Au, Fe/Ag, and Nb/Cu multilayer systems during heat treatments was investigated. The disintegration temperature of these systems decreases with decreasing single-layer thickness. Up to a critical thickness, the disintegration temperature is proportional to the reciprocal layer thickness. The driving force of this process is related to the interfacial stress and the local variation of the interface curvature. After heat treatment, spherically shaped Fe and Nb nanoparticles, located in chains perpendicular to the substrate, were observed and depicted by means of transmission electron microscopy (TEM) and X-ray microscopy (XRM).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Troche, P., Hoffmann, J., Heinemann, K., Hartung, F., Schmitz, G., Freyhardt, H.C., Rudolph, D., Thieme, J., Guttmann, P., Thin Solid Films 353, pp. 3339 (1999)Google Scholar
2. Troche, P., Hoffmann, J., Heinemann, K., Hartung, F., Schmitz, G., Freyhardt, H.C., Rudolph, D., Thieme, J., Guttmann, P., X-ray microscopy and spectroscopy, Springer-Verlag, Heidelberg, 1998, pp. 123129 Google Scholar
3. Cline, H.E., Acta Met. 19, p. 481490 (1957)Google Scholar
4. Suchtelen, J. van, J. Cryst. Growth 43, pp. 2846 (1978)Google Scholar
5. Schmahl, G., Rudolph, D., Niemann, B., Guttmann, P., Thieme, J., Naturwissenschaften 83, pp. 6170 (1996)Google Scholar
6. Locquet, J.-P., Neerinck, D., Stockman, L., and Bruynseraede, Y., Phys. Rev. B 39, pp. 1333813342 (1989)Google Scholar
7. Cullity, B.D., Elements of X-Ray Diffraction, Addison-Wesley Publishing Comp., 1967 p. 99 Google Scholar
8. Ariosa, D., Fischer, O., Karkut, M.G., Triscone, J.-M., Phys. Rev. B 37, pp. 24212425 (1988)Google Scholar
9. Streitz, F.H., Cammarata, R.C., Sieradzki, K., Phys. Rev. B 49, pp. 1070710716 (1994)Google Scholar