Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-01T10:44:22.620Z Has data issue: false hasContentIssue false

Thermoelectric properties of Li-doped Cu0.95-xM0.05LixO (M=Mn, Ni, Zn)

Published online by Cambridge University Press:  07 December 2012

N. Yoshida
Affiliation:
Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
T. Naito
Affiliation:
Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
H. Fujishiro*
Affiliation:
Faculty of Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
*
(* corresponding author: fujishiro@iwate-u.ac.jp)
Get access

Abstract

Thermoelectric properties of the Li-doped Cu0.95-xM0.05LixO (M=divalent metal ion; Mn, Ni, Zn) were investigated at the temperature up to 1273 K. In the doped divalent metal ions, Zn2+ ion was the most effective to reduce the thermal conductivity, and the Ni2+ substitution was preferable to decrease the electrical resistivity. For the Cu0.95-xNi0.05LixO sample at x=0.03, the maxima of the dimensionless thermoelectric figure of merit ZT and the power factor P at 1246 K were 4.2×10-2 and 1.6 ×10-4 W/K2m, respectively. The enhancement of the thermoelectric properties of the Li-doped Cu0.95-xM0.05LixO system was discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Terasaki, I., , Sasago, Y, and Uchinokura, K.: Phys. Rev. B 56, R12685 (1997).CrossRefGoogle Scholar
Funahashi, R., Matsubara, I., Ikuta, H., Takeuchi, T., Mizutani, U., and Sodeoka, S.: Jpn. J. Appl. Phys. 39, L1127 (2000).CrossRefGoogle Scholar
Ito, M., Nagira, T., Furumoto, D., Katsuyama, S., and Nagai, H.: Scripta Materialia 48, 403 (2003).CrossRefGoogle Scholar
Jeong, Y. K. and Choi, G. M.: J. Phys. Chem. Solids 57, 81 (1996).CrossRefGoogle Scholar
Yang, B., Thurston, T., Tranquada, J., and Shirane, G.: Phys. Rev. B 39, 4343 (1989).CrossRefGoogle Scholar
Klimm, D., Ganschow, S., Schulz, D., and Fornari, R.: J. Cryst. Growth 310, 3009 (2008).CrossRefGoogle Scholar
Tsubota, T., Ohtaki, M., Eguchi, K., and Arai, H.: J. Mater. Chem. 7, 85 (1997).CrossRefGoogle Scholar
Ohtaki, M., Araki, K., and Yamamoto, K.: J Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
Suda, S., Fujitsu, S., Koumoto, K. and Yanagida, H.: Jpn. J. Appl. Phys. 31, 2488 (1992).CrossRefGoogle Scholar
Yoshida, N., Naito, T. and Fujishiro, H.: submitted to Jpn. J. Appl. Phys. (2012).Google Scholar
Fujishiro, H., Ikebe, M., Naito, T., Noto, K., Kobayashi, S., and Yoshizawa, S.: Jpn. J. Appl. Phys. 33, 4965 (1994).CrossRefGoogle Scholar
Ziman, J. M.: PRINCIPLES OF THE THEORY OF SOLIDS (CAMBRIDGE UNIVERSITY PRESS, London, 1964) p. 200.Google Scholar