Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T23:19:35.759Z Has data issue: false hasContentIssue false

Thin Films of Oxygen-Deficient Perovskite Superconductors by Laser Ablation

Published online by Cambridge University Press:  26 February 2011

Joseph Bohandy
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20707
F. J. Adrian
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20707
K. Moorjani
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20707
W. J. Green
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20707
B. F. Kim
Affiliation:
The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20707
Get access

Abstract

Thin films of the new class of high temperature superconducting perov-skites have been prepared by laser ablation of t,he bulk materials with a pulsed, excimer laser operating at 193 nm. The films were deposited on room temperature substrates without post-deposition processing. The existence of superconducting regions in the inhomogeneous films was established by a novel microwave method which uses a slightly modified electron spin resonance spectrometer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bednorz, J. G. and Muller, K. A., Z. Phys. B64, 189 (1986).Google Scholar
2 Takagi, H., Uchida, S., Kitazawa, K., and Tanaka, S., Jpn. J. Appl. Phys. 26, L123 (1987)Google Scholar
3 Chu, C. W., Hor, P. H., Mong, R. L., Gao, L., Huang, Z. J., and Wang, Y. O., Phys. Rev. Lett. 38, 405 (1987).Google Scholar
4 Cava, R. J., van Dover, R. B., Batlogg, J. B., and Reitman, E. A., Phys. Rev. Lett. 38, 408 (1987).Google Scholar
5 Moorjani, K., Bohandy, J., Adrian, F. J., Kim, B. F., Shull, R. D., Chiang, C. K., Swartzendruber, L. J., and Bennett, L. H., Phys. Rev. B36, 4036 (1987).Google Scholar
6 Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., McLean, W. L. and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
7 Gittleman, J. I. and Bozowski, S., Phys. Rev. 161, 398 (1967).Google Scholar
8 White, R. H. and Tinkham, M., Phys. Rev. 136, 203 (1964).Google Scholar
9 Kim, B. F., Bohandy, J., Moorjani, K., and Adrian, F. J., J. Appl. Phys. (submitted).Google Scholar
10 Roberts, B. W., J. Phys. Chem. Ref. Data 5, 581 (1976).Google Scholar
11 Orlando, T. P., Delin, K. A., Foner, S., McNiff, E. J. Jr., Tarascon, J. M., Greene, L. H., McKinnon, W. R., and HUH, G. W., Phys. Rev. B35, 7249 (1987).Google Scholar