Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T11:32:35.168Z Has data issue: false hasContentIssue false

Three-dimensional magnetophotonic crystals based on artificial opals: fabrication and properties

Published online by Cambridge University Press:  01 February 2011

A. V. Baryshev
Affiliation:
Toyohashi University of Technology, 1–1 Hibari-Ga-Oka, Tempaku, Toyohashi, Japan Ioffe Physical-Technical Institute, Politechnicheskaya 26, 194021 St.-Petersburg, Russia
T. Kodama
Affiliation:
Toyohashi University of Technology, 1–1 Hibari-Ga-Oka, Tempaku, Toyohashi, Japan
K. Nishimura
Affiliation:
Toyohashi University of Technology, 1–1 Hibari-Ga-Oka, Tempaku, Toyohashi, Japan
H. Uchida
Affiliation:
Toyohashi University of Technology, 1–1 Hibari-Ga-Oka, Tempaku, Toyohashi, Japan
M. Inoue
Affiliation:
Toyohashi University of Technology, 1–1 Hibari-Ga-Oka, Tempaku, Toyohashi, Japan CREST, Japan Science and Technology Corporation, Hongou Tsuna Bldg. 8F, Hongou 6–17–9, Bunkyou-ku, Tokyo 113–0033, Japan
Get access

Abstract

We have fabricated three-dimensional magnetophotonic (3D MPCs) crystals based on artificial opals. Structural and magnetic properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. It was shown that increase of volume fraction of magnetite in the opal lattice leads to a dramatic decrease of transmitted light intensity in the visible region. We also found considerable changes in the Faraday rotation inside the (111) photonic bandgap of an opal—magnetite magnetophotonic crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).Google Scholar
2. Astratov, V. N., Bogomolov, V. N., Kaplyanskii, A. A., Prokofiev, A. V., Samoilovich, L.A., Samoilovich, S. M., Vlasov, Yu. A.. Nuovo Cimento D17, 1349 (1995).Google Scholar
3. Yu. Vlasov, A., Astratov, V. N., Karimov, O. Z., Kaplyanskii, A. A., Bogomolov, V. N., Prokofiev, A. V. Phys. Rev. B 55, 13357 (1997).Google Scholar
4. Zakhidov, A. A., Science 282, 897 (1998).Google Scholar
5. Wijnhoven, J. E. and Vos, W. L., Science 281, 802 (1998).Google Scholar
6. Tarhan, I. I. and Watson, G. H., Phys. Rev. Lett. 76, 315 (1996).Google Scholar
7. Amos, R. M., Rarity, J. G., Kitson, S. C.. Phys. Rev. B 61, 3, 2929 (2000).Google Scholar
8. Inoue, M., Arai, K. I., Fujii, T., and Abe, M., J. Appl. Phys. 83, 6768 (1998);Google Scholar
Inoue, M., Arai, K. I., Fujii, T., and Abe, M., J. Appl. Phys. 85, 5768 (1999).Google Scholar
9. Fedyanin, A. A., Yoshida, T., Nishimura, K., Marowsky, G., Inoue, M., and Aktsipetrov, O. A., JETP Lett. 76, 527 (2002).Google Scholar
10. Baryshev, A. V., Kaplyanskii, A. A., Kosobukin, V. A., Limonov, M. F., Samusev, K. B., and Usvyat, D. E., Phys. Solid State 45, 459 (2003).Google Scholar
11. “Opalon”, Moscow, Russia.Google Scholar
12. Baryshev, A. V., Kodama, T., Nishimura, K., Uchida, H., and Inoue, M., J. Appl. Phys. 95, 7336 (2004);Google Scholar
AV, Baryshev, T, Kodama, K, Nishimura, Uchida, H., and Inoue, M., IEEE trans. Magn. 40, 2829 (2004).Google Scholar
13. Nishimura, K., Baryshev, A. V., Kodama, T., Uchida, H., and Inoue, M., J. Appl. Phys. 95, 6633 (2004).Google Scholar
14. Data compiled by the JCPDS-International Center for Diffraction Data, Swarthmore, PA.Google Scholar
15. Baryshev, A. V., Kodama, T., Nishimura, K., Uchida, H., and Inoue, M., Trans. Magn. Soc. Jpn. 4, 290 (2004).Google Scholar
16. Tepper, T., Ilievski, F., Ross, C. A., Zaman, T. R., Ram, R. J., Sung, S. Y., Stadler, B. J. H., J. Appl. Phys. 93, 6948 (2003).Google Scholar