Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T09:40:47.871Z Has data issue: false hasContentIssue false

Topological connectivity analysis of accumulated radiation damage from multiple molecular dynamics recoil cascades

Published online by Cambridge University Press:  28 March 2012

Henry R. Foxhall
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, S1 3JD, UK
John H. Harding
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, S1 3JD, UK
Karl P. Travis
Affiliation:
Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, South Yorkshire, S1 3JD, UK
Get access

Abstract

The results of sequential large-scale molecular dynamics (MD) simulations of radiation damage cascades in Gd2Ti2O7 and Gd2Zr2O7 are presented. Twelve alpha recoil cascades, each due to a recoil atom with 40 keV of kinetic energy, are performed in both materials and a stark contrast in behaviour observed. Topological connectivity analysis is used to analyse the structural evolution of the two systems. Our results provide important insight into accumulation of disorder in pyrochlore-structured ceramics.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ringwood, A. E., Kesson, S. E., Ware, N. G., Hibberson, W., Major, A., Nature 278, 219 (1979)10.1038/278219a0Google Scholar
2. White, T. J., Segall, R. L., Hutchinson, J. L., Barry, J. C., Proc. Royal Soc. Lond. Series A, Math. Phys. Sci. 392, 343 (1984)10.1098/rspa.1984.0035Google Scholar
3. Ringwood, A. E., Oversby, V. M., Kesson, S. E., Nucl. and Chem. Waste Man. 2, 287 (1981)10.1016/0191-815X(81)90055-3Google Scholar
4. Lumpkin, G. R., J. Nucl. Mater. 289, 136 (2001)10.1016/S0022-3115(00)00693-0Google Scholar
5. Lumpkin, G. R., Elements 2, 365 (2006)10.2113/gselements.2.6.365Google Scholar
6. Lumpkin, G. R., Williams, C. T., Smith, K. L., Payne, T. E., McGlinn, P. J., Hart, K. P., Oberli, F., Materials Research Society Symposium - Proceedings 663, 979 (2001)Google Scholar
7. Elliot, R. O., Olsen, C. E., Vineyard, G. H., Acta Metaliurgica 11, 1129 (1963)10.1016/0001-6160(63)90040-3Google Scholar
8. Lumpkin, G. R., Smith, K. L., Blackford, M. G., Thomas, B. S., Whittle, K. R., Marks, N. A., Zaluzec, N. J., Phys. Rev. B – Condens. Matter and Mater. Phys. 77, 214201 (2008)10.1103/PhysRevB.77.214201Google Scholar
9. Hobbs, L. W., Topological Approaches to the Structure of Crystalline and Amorphous Atom Assemblies, in: Engineering of Crystalline Materials Properties, Springer, 2008, pp. 193-230.10.1007/978-1-4020-6823-2_10Google Scholar
10. Purton, J. A., Allan, N. L., Journal of Materials Chemistry 12, 2923 (2002)10.1039/b201111pGoogle Scholar
11. Wang, S. X., Begg, B. D., Wang, L. M., Ewing, R. C., Weber, W. J., Govidan Kutty, K. V., Journal of Materials Research 14, 4470 (1999)10.1557/JMR.1999.0606Google Scholar
12. Chartier, A., Meis, C., Crocombette, J.-P., Weber, W. J., Corrales, L. R., Physical Review Letters 94, 025505 (2005)10.1103/PhysRevLett.94.025505Google Scholar
13. Chartier, A., Meis, C., Weber, W. J., Corrales, L. R., Phys. Rev. B 65, 134116 (2002)10.1103/PhysRevB.65.134116Google Scholar
14. Squire, , Maddrell, E. R., Hyatt, N. C., Stennett, M. C., Ceramic Transactions 227, 249 (2011)Google Scholar
15. Deiseroth, H. J., Muller-Buschbaum, H., Zeitschrift fuer Anorganische und Allgemeine Chemie 375. 152 (1970)10.1002/zaac.19703750205Google Scholar
16. Todorov, I.T., Smith, W., Trachenko, K. O., Dove, M. T., J. Mater. Chem. 16, 1918 (2006)10.1039/b517931aGoogle Scholar
17. Todorov, I.T., Purton, J.A., Allan, N.L., Dove, M.T., J. Phys.: Condens. Matter 18, 2217 (2006)Google Scholar
18. Ziegler, J. F., Biersack, J. P., Littmark, U., The Stopping and Range of Ions in Solids, Pergamon, New York, 1985.Google Scholar
19. Veiller, L., Crocombette, J.-P., Ghaleb, D., J. Nucl. Mater. 306, 61 (2002)10.1016/S0022-3115(02)01134-0Google Scholar
20. Trachenko, K. O., Dove, M. T., Artacho, E., Todorov, I. T., Smith, W., Physical Review B - Condensed Matter and Materials Physics 73, 174207 (2006)10.1103/PhysRevB.73.174207Google Scholar
21. Devanathan, R., Corrales, L. R., Weber, W. J., Chartier, A., Meis, C., Nucl. Inst. Meth. Phys. Res. B 250, 46 (2006)10.1016/j.nimb.2006.04.109Google Scholar
22. Marians, C. S., Hobbs, L. W., J. Non-Cryst. Solids 119, 269 (1990)10.1016/0022-3093(90)90299-2Google Scholar
23. Marians, C. S., Hobbs, L. W., J. Non-Cryst. Solids 124, 242 (1990)10.1016/0022-3093(90)90269-RGoogle Scholar
24. Yuan, X., Hobbs, L. W., Nucl. Inst. Meth. Phys. Res. B 191, 74 (2002)10.1016/S0168-583X(02)00516-5Google Scholar
25. Farges, F., Ewing, R. C., Brown, G. E. Jr., J. Mater. Res. 8, 1983 (1993)10.1557/JMR.1993.1983Google Scholar
26. Lumpkin, G. R., Ewing, R. C., Physics and Chemistry of Minerals 16, 2 (1988)10.1007/BF00201325Google Scholar
27. Lian, J., Wang, L. M., Haire, R. G., Helean, K. B., Ewing, R. C., Nucl. Inst. Meth. Phys. Res. B 218, 236 (2004)10.1016/j.nimb.2004.01.007Google Scholar
28. Trachenko, K. O., Dove, M. T., Geisler, T., Todorov, I. T., Smith, B., J. Phys.: Condens. Matter 16, S2623 (2004)Google Scholar
29. Farges, F., Am. Mineral. 82, 44 (1997)10.2138/am-1997-1-206Google Scholar
30. Reid, D. P., Stennett, M. C., Ravel, B., Woicik, J. C., Peng, N., Maddrell, E. R., Hyatt, N. C., Nucl. Inst. Meth. Phys. Res. B 268, 1847 (2010)10.1016/j.nimb.2010.02.026Google Scholar