Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:10:06.717Z Has data issue: false hasContentIssue false

Transport Through Electrophoretically Deposited CuMn1.8O4 Spinel Coatings on Crofer Interconnects

Published online by Cambridge University Press:  01 February 2011

Wenhua Huang
Affiliation:
wenhuah@bu.edu, Nanodynamics Energy Inc., Buffalo, New York, United States
Srikanth Gopalan
Affiliation:
sgopalan@bu.edu, Boston University, 02446, Massachusetts, United States
Uday B. Pal
Affiliation:
upal@bu.edu, Boston University, Brookline, Massachusetts, United States
Soumendra Basu
Affiliation:
basu@bu.edu, Boston University, 02446, Massachusetts, United States
Get access

Abstract

Dense and well-adhered CuMn1.8O4 spinel oxide coatings were successfully deposited on Crofer 22 APU stainless steel substrates by a cost effective electrophoretic deposition technique. Coated and uncoated Crofer substrates were oxidized for 120 hours in air at 800°C. A diffusion model was developed for the oxidation of the coated alloys, which predicted para-linear oxidation kinetics. The effective diffusivities in the coating and in the thermally grown oxide were calculated to be 2×10-15 cm2/s and 2.5×10-16 cm2/s respectively, at 800°C. Area specific resistances (ASR) of thermally cycled samples at 800°C did not show a significant difference compared to the isothermally oxidized sample for the same total oxidation time, suggesting good coating adherence. The ASR of the coated alloys is projected to be around 3.8×10-2Ωcm2 after 50000 at 800°C in air, making them excellent candidates for interconnect applications for solid oxide fuel cells operated at 800°C or lower.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Steele, B. C. H. and Heinzel, A., Nature, 414, 345 (2001).Google Scholar
2. Dokiya, M., Solid State Ionics, 383, 152 (2002).Google Scholar
3. de Souza, S., Visco, S. J. and De Jonghe, L. C., Solid State Ionics, 98, 57 (1997).Google Scholar
4. Ishihara, H., Matsuda, H. and Takita, Y., J. Am. Chem. Soc., 116, 3801 (1994).Google Scholar
5. Huang, K. Q., Tichy, R. and Goodenough, J. B., J. Am. Ceram. Soc., 81, 2565 (1998).Google Scholar
6. Kadowaki, T., Shiomitsu, T., Matsuda, E., Nakagawa, H., Tsuneizumi, H., and Maruyama, T., Solid State Ionics, 67, 65 (1993).Google Scholar
7. Huang, K., Hou, P. Y. and Goodenough, J. B., Materials Research Bulletin, 36, 81 (2001).Google Scholar
8. Yang, Z. G., Weil, K. S., Paxton, D. M., and Stevenson, J. W., J. Electrochem. Soc., 150, A1188 (2003).Google Scholar
9. Kofstad, P. and Bredesen, R., Solid State Ionics, 52, 69 (1992).Google Scholar
10. Asteman, H., Svensson, J. E., Johansson, L. G., Norell, M., Oxid. Met., 52, 95 (1999).Google Scholar
11. Jiang, S. P., Zhang, J. P., Zheng, X. G., J. Eur. Ceram. Soc., 22, 361 (2002).Google Scholar
12. Yang, Z. G., Xia, G., Simner, S. P., Stevenson, J. W., J. Electrochem. Soc., 152 (9), A1896 (2005).Google Scholar
13. Quaddakers, W. J., Greiner, H., Hansel, M., Pattanaik, A., Khanna, A. S., and Mallener, W., Solid State Ionics, 91, 55 (1996).Google Scholar
14. Larring, Y. and Norby, T., J. Electrochem. Soc., 147 (9), 3251 (2000).Google Scholar
15. Yang, Z. G., Xia, G. and Stevenson, J. W., Electrochem. Solid State Lett., 8 (3), A168 (2005).Google Scholar
16. Chen, X., Hou, P. Y., Jacobson, C. P., Visco, S.J. and De Jonghe, L. C., Solid State Ionics, 176, 425 (2005).Google Scholar
17. Ling, H. and Petric, A., Proc. 9th International Symposium on Solid Oxide Fuel Cells IX, Quebec City, Canada, p. 1866 (2005).Google Scholar
18. Bateni, M. R., Wei, P., Deng, X., and Petric, A., Surf. Coat. Technol., 201, 4677 (2007).Google Scholar
19. Quadakkers, W. J., Greiner, H., Hänesl, M., Pattanaik, A., Khanna, A. S. and Malléner, W., Solid State Ionics, 91, 55 (1996).Google Scholar
20. Oishi, N., Namikawa, T. and Yamazaki, Y., Surf. Coat. Technol., 132, 58 (2000).Google Scholar
21. Johnson, C., Gemmen, R. and Orlovskaya, N., Composites Part B, 35, 167 (2004).Google Scholar
22. Sarkar, P. and Nicholson, P. S., J. Am. Ceram. Soc., 79 (8), 1987 (1996).Google Scholar
23. Hirata, Y., Nishimoto, A. and Ishihara, Y., J. Ceram. Soc. Jpn., 99, 108 (1991).Google Scholar
24. Nagain, M., Yamashita, K., Umegaki, T. and Takuma, Y., J. Am. Ceram. Soc., 76 (1), 253 (1993).Google Scholar
25. Baumgarther, C.E., DeCarlo, V. J., Glugla, P. G. and Grimaldi, J., J. Electrochem. Soc., 38, 119 (1986).Google Scholar
26. Basu, S. N. and Yurek, G. J., Oxidation of Metals, 36 (3), 281 (1991).Google Scholar
27. Gopalan, S., Huang, W., Pal, U. B., and Basu, S. N., submitted to J. Electrochem. Soc. (2008).Google Scholar
28. Galerie, A., Henry, S., Wouters, Y., Mermoux, M., Petit, J.P., and Antoni, L., Materials at High Temperatures, 22 (1–2), 105 (2005).Google Scholar
29. Bateni, M. R., Wei, P., Deng, X., and Petric, A., Surf. Coat. Technol., 201, 4677 (2007).Google Scholar
30. Crofer 22 APU Material Data Sheet No.4046 Thyssenkrupp VDM (2006).Google Scholar
31. Zhu, W. Z. and Deevi, S. C., Materials Research Bulletin, 38, 957 (2003).Google Scholar