Published online by Cambridge University Press: 01 February 2011
Resonant Ultrasound Spectroscopy and low-temperature ultrasonic attenuation measurements are reported for filled and unfilled skutterudites and for Ge-clathrates. These data reveal that an unusual elastic behavior complements the thermal properties of the filled skutterudites and indicate the presence of low-energy vibrational modes. The attenuation at low-temperatures in the single-crystalline Ge-clathrate is glasslike and can be described by the same phenomenological Tunneling Model that has been developed to describe the low-temperature properties of amorphous solids.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.