Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T11:53:01.641Z Has data issue: false hasContentIssue false

Ultra-Thin p+ Layers in GaAs

Published online by Cambridge University Press:  28 February 2011

K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
U. K. Chakrabarti
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The formation of shallow (0.05–0.2 μm) p+ layers in GaAs by pulse diffusion of Zn from a doped oxide source, thermal diffusion of Cd by vapor transport, or by low energy implantation of Cd, Mg, Be, Zn or Hg ions was investigated by electrochemical capacitance-voltage profiling, Secondary Ion Mass Spectrometry, Rutherford backscattering and Hall measurements. Hole densities in excess of 1019 cm−3 are obtainable by either Zn diffusion or acceptor implantation, though the high temperature cycle must be kept to ≤3 sec at (≤1000°C to prevent excessive redistribution of the acceptor dopants. Pulse diffusion at temperature °C leads to shallow regions with atomic concentrations above 1019 cm−3, but electrically active concentrations orders of magnitude less. These results are explained in terms of the unavailability of a sufficient density of vacancies at low temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hong, C. S., Lui, Y. Z., Dapkus, A. D. and Coleman, J. J., IEEE Electron. Dev. Lett. 2, 225 (1981).Google Scholar
2. Ando, H., Susa, N. and Kanbe, H., IEEE Electron. Dev. Lett. 29, 1408 (1982).Google Scholar
3. Blaauw, C., Spingthorpe, C. J., Dzioba, S. and Emmerstorfer, B., J. Electron. Mater. 13, 251 (1984).Google Scholar
4. Ghandi, S. K., Huang, R. T. and Borcego, J. M., Appl. Phys. Lett. 48, 415 (1986).Google Scholar
5. Ageno, S. K., Roedel, R. J., Mellen, N. and Eschen, J. S., Appl. Phys. Lett. 47, 1193 (1985).Google Scholar
6. Kumoble, H., Tanaka, T., Namijaki, H., Ishi, M. and Susuki, N., Appl. Phys. Lett. 33, 38 (1978).Google Scholar
7. Ghandi, S. K., VLSI Fabrication Principles (Wiley-Interscience, NY 1983) Chapter 4, and references therein.Google Scholar
8. Field, R. J. and Ghandi, S. K., J. Electrochem. Soc. 129, 1567 (1982).Google Scholar
9. Donnelly, J. P., Nucl. Instr. Meth. 182, 553 (1981).Google Scholar
10. Dobkin, D. and Gibbons, J. F., J. Electrochem. Soc. 131, 1699 (1984).Google Scholar
11. Dobkin, D. and Gibbons, J. F., Appl. Phys. Lett. 44, 884 (1984).Google Scholar
12. Pearton, S. J., Cummings, K. D. and Vella-Coleiro, G. P., J. Electrochem. Soc. 132, 2743 (1985).Google Scholar
13. Pearton, S. J., Cummings, K. D. and Vella-Coleiro, G. P., J. Appl. Phys. 58, 3252 (1985).Google Scholar
14. Pearton, S. J., Hull, R., Jacobson, D. C., Poate, J. M. and Williams, J. S., Appl. Phys. Lett. 48, 38 (1986).Google Scholar
15. Baliga, B. J. and Ghandi, S. K., IEEE Electron. Dev. Lett. 19, 761 (1972).Google Scholar
16. Erkaya, H. H., Roedel, R. J., Careau, R., Williams, P., Leavitt, J. and Von Neida, A. R., J. Electrochem. Soc. 132, 2213 (1985).Google Scholar
17. Nakashima, N., Narusawa, T., Semura, S. and Kobayashi, K. L., Proc. 3th Int. Conf. Defects in Semi. (ed. Kimerling, L. C., Metalurgical Soc. PA 1984) p. 463.Google Scholar