Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T01:13:52.436Z Has data issue: false hasContentIssue false

Understanding the structure of Si nanoclusters in a/nc-Si:H films using spherical aberration-corrected transmission electron microscopy

Published online by Cambridge University Press:  21 March 2011

Christopher R. Perrey
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
Siri S. Thompson
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
Markus Lentzen
Affiliation:
Institut für Festkörperforschung, Forschungszentrum Jülich, Jülich, Germany
Uwe Kortshagen
Affiliation:
Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
C. Barry Carter*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, U.S.A.
*
*corresponding author: cbcarter@umn.edu
Get access

Abstract

Recent work has shown that the electrical properties of hydrogenated amorphous Si films with nanocrystalline inclusions (a/nc-Si:H) make this material a promising candidate for applications in solar cells. The present study applies the technique of spherical aberration-corrected high-resolution transmission electron microscopy for the identification and analysis of the crystalline content of an a/nc-Si:H film. By varying both the spherical aberration of the objective lens and the defocus, regions of crystallinity in the a/nc-Si:H film can be identified. This study reports the analysis of Si nanoparticles of approximately 1.5 nm in size. Some of these nanoparticles contain planar defects, such as twin defects and stacking faults. All particles observed were the same crystal structure as bulk Si, which agrees with theoretical cluster calculations. Beam damage was observed in the amorphous matrix for long electron–beam exposures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292 (1977).Google Scholar
2. Butté, R., Meaudre, R., Meaudre, M.et al., Phil. Mag. B 79, 1079 (1999).Google Scholar
3. Butté, R., Vignoli, S., Meaudre, M.et al., J. Non-Cryst. Solids 266–269, 263 (2000).Google Scholar
4. Koval, R., Niu, X., Pearce, J.et al., in Amorphous and Heterogeneous Silicon Thin Films 2000, edited by Collins, R.W., Branz, H.M., Guha, S.et al. (Mat. Res. Soc. Proc. 609, Pittsburgh, PA, 2000), pp. A1551–A1556.Google Scholar
5. Kwon, D., Chen, C.-C., Cohen, D.J., Jin, H.-C., Hollar, E., Robertson, I., Abelson, J.R., Phys. Rev. B 60 (7), 4442 (1999).Google Scholar
6. Longeaud, C., Kleider, J. P., Cabarrocas, P. Roca iet al., J. Non Cryst. Solids 227–230, 96 (1998).Google Scholar
7. Lubrianiker, Y., Cohen, J.D., Jin, H.-C., Abelson, J.R., Phys. Rev. B 15, 4434 (1999).Google Scholar
8. Meaudre, R., Meaudre, M., Butte, R.et al., Philos. Mag. Lett. 79 (9), 763 (1999).Google Scholar
9. Cabarrocas, P. Roca i, Morral, A. Fontcuberta i, and Poissant, Y., Thin Solid Films 403–404, 39 (2002).Google Scholar
10. Wronski, C. R., Pearce, J. M., Koval, R. J.et al., in Amorphous and Heterogeneous Silicon-Based Films--2002, edited by Abelson, J.R., Boyce, J.B., Cohen, J.D.et al. (Mat. Res. Soc. Proc. 715, Pittsburgh, PA, 2002), pp. 459470.Google Scholar
11. Voyles, P. M., Treacy, M. M. J., Jin, H.-C.et al., in Amorphous and Heterogeneous Silicon Thin Films 2000, edited by Collins, R.W., Branz, H.M., Guha, S.et al. (Mat. Res. Soc. Proc. 609, Pittsburgh, PA, 2000), pp. A2.4.1–A2.4.6.Google Scholar
12. Treacy, M. M. J., Voyles, P. M., and Gibson, J. M., in Amorphous and Heterogeneous Silicon Thin Films 2000, edited by Collins, R.W., Branz, H.M., Guha, S.et al. (Mat. Res. Soc. Proc. 609, Pittsburgh, PA, 2000), pp. A2.5.12.5.6.Google Scholar
13. Treacy, M. M. J., Gibson, J. M., and Keblinski, P. J., J. Non-Cryst. Solids 231, 99 (1998).Google Scholar
14. Treacy, M. M. J. and Gibson, J. M., Acta Crystallogr. A52, 212 (1996).Google Scholar
15. Williams, D. B. and Carter, C. B., Transmission Electron Microscopy. (Kluwer Academic Publishers, New York, 1996).Google Scholar
16. Haider, M., Uhlemann, S., Schwan, E.et al., Nature 392, 768 (1998).Google Scholar
17. Haider, M., Rose, H., Uhlemann, S.et al., Ultramicroscopy 75, 53 (1998).Google Scholar
18. Jia, C. L., Lentzen, M., and Urban, K., Science 299, 870 (2003).Google Scholar
19. Jia, C.-L., Lentzen, M., and Urban, K., Micro. Microanal. 10, 174 (2004).Google Scholar
20. Wawer, P., Irmscher, S., and Wagemann, H. G., presented at the Conference Record of the IEEE Photovoltaic Specialists Conference, Piscataway, NJ, 1997 (unpublished).Google Scholar
21. Borjanovic, V., Kovacevic, I., Santic, B.et al., Mat. Sci. Eng. B-Solid 71, 292 (2000).Google Scholar
22. Morral, A. F. i., Brenot, R., Hamers, E. A. G.et al., J. Non-Cryst. Solids 266–269, 48 (2000).Google Scholar
23. Viera, G., Huet, S., Mikikian, M.et al., Thin Solid Films 403, 467 (2002).Google Scholar
24. Viera, G., Mikikian, M., Bertran, E.et al., J. Appl. Phys. 92 (8), 4684 (2002).Google Scholar
25. Bertran, E., Sharma, S. N., Viera, G.et al., J. Mater. Res. 13 (9), 2476 (1998).Google Scholar
26. Perrey, C. R., Thompson, S., Lentzen, M.et al., J. Non Cryst. Solids (accepted 2004).Google Scholar
27. Röthlisberger, U., Andreoni, W., and Parrinello, M., Phys. Rev. Lett. 72 (5), 665 (1994).Google Scholar
28. Chelikowsky, J. R. and Phillips, J. C., Phys. Rev. Lett. 45 (15), 1653 (1989).Google Scholar
29. Carter, C. B., Gilliss, S. R., and Perrey, C. R., Micro. Microanal. 9 (suppl. 2), 102 (2003).Google Scholar