Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T13:48:39.606Z Has data issue: false hasContentIssue false

The use of ion implantation and annealing for the fabrication of strained silicon on thin SiGe virtual substrates

Published online by Cambridge University Press:  17 March 2011

D. Buca
Affiliation:
Institut für Schichten und Grenzflächen (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
M.J. Mörschbächer
Affiliation:
Institut für Schichten und Grenzflächen (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
B. Holländer
Affiliation:
Institut für Schichten und Grenzflächen (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
M. Luysberg
Affiliation:
Institut für Festkörperforschung (IFF), FZJ
R. Loo
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
M. Caymax
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
S. Mantl
Affiliation:
Institut für Schichten und Grenzflächen (ISG1) and cni - Center of Nanoelectronic Systems for Information Technology, Forschungszentrum Jülich (FZJ), D-52425 Jülich, Germany
Get access

Abstract

Strain relaxed Si1−xGex layers are attractive virtual substrates for the epitaxial growth of strained Si. Tensile strained Si has attracted a lot of attention due its superior electronic properties. In this study, the strain relaxation of pseudomorphic Si1−xGex layers grown by chemical vapor deposition (CVD) on Si(100) substrates was investigated after He+ ion implantation and thermal annealing. The implantation induced defects underneath the SiGe/Si interface promote strain relaxation during annealing via preferred nucleation of dislocation loops which form misfit dislocations at the interface to the substrate. The amount of strain relaxation as well as the final threading dislocation density depend on the implantation dose and energy. Si1−xGex layers with thicknesses between 75 and 420 nm and Ge concentrations between 19 and 29 at% were investigated. The strain relaxation strongly depends on the layer thickness. Typically the structures show ≈70 % strain relaxation and threading dislocation densities in the low 106 cm−2 range. AFM investigations proved excellent surface morphology with an rms roughness of 0.6 nm. The samples were investigated by Rutherford backscattering spectrometry, ion channeling, transmission electron microscopy and atomic force microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abstreiter, G., Brugger, H., Wolf, T., Jorke, H., and Herzog, H., Phys. Rev. Lett. 54, 2441 (1985).Google Scholar
2. Rim, K., Hoyt, J., and Gibbons, J., IEDM Tech. Dig. p. 707 (1998).Google Scholar
3. Fitzgerald, E., Xie, Y.-H., Green, M., Brasen, D., Kortan, A., Michel, J., Mii, Y.-J., and Weir, B., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
4. Fitzgerald, E., Xie, Y.-H., Monroe, D., Silverman, P., Kuo, J., Kortan, A., Thiel, F., and Weir, B., Journal of Vacuum Science & Technology B 10, 1807 (1992).Google Scholar
5. Fitzgerald, E.A., Currie, M.T., Samavedam, S.B., Langdo, T.A., Taraschi, G., Yang, V., Leitz, C.W., Bulsara, M.T., Phys. Stat. Sol. A 171, 227 (1999).Google Scholar
6. Hackbart, T., Hertzog, H.-J., Hieber, K.-H., König, U., Mantl, S., Holländer, B., Lenk, St., Känel, H. von, Aniel, F., and Giguerre, L., Solid State Electronics, (2004) -in press.Google Scholar
7. Mantl, S., Holländer, B., Liedtke, R., Mesters, S., Herzog, H., Kibbel, H., and Hackbarth, T., Nucl. Instrum. Methods Phys. Res. B 147, 29 (1999).Google Scholar
8. Holländer, B., Lenk, S., Mantl, S., Trinkaus, H., Kirch, D., Luysberg, M., Hackbarth, T., Herzog, H.-J., and Fichtner, P., Nucl. Instrum. Methods Phys. Res. B 175–177, 357 (2001).Google Scholar
9. Luysberg, M., Kirch, D., Trinkaus, H., Holländer, B., Lenk, S., Mantl, S., Herzog, H.-J., Hackbarth, T., and Fichtner, P., Proceedings of Royal Microscopical Society. Microscopy of Semiconducting Materials XII, 181 (2001).Google Scholar
10. Tong, Q. -T. and Gösele, U., Adv. Mat., 11, 1404 (1999).Google Scholar
11. Christiansen, S., Mooney, P., Chu, J., and Grill, A., Materials Issues in Novel Si-Based Technology. Symposium, p. 27 (2002).Google Scholar
12. Trinkaus, H., Holländer, B., Rongen, S., Mantl, S., Herzog, H.-J., Kuchenbecker, J., and Hackbarth, T., Appl. Phys. Lett. 76, 3552 (2000).Google Scholar
13. Raineri, V., Coffa, S., Silagyi, E., Gyulai, J., and Rimini, E., Phys. Rev. B 61, 937 (2000).Google Scholar
14. Fichtner, P., Kaschny, J., Kling, A., Trinkaus, H., Yankov, R., Muecklich, A., Skorupa, W., Zawislak, F., Amaral, L., Silva, M. da et al. , Nucl. Instrum. Methods Phys. Res. B 136–138, 460 (1998).Google Scholar
15. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, Oxford-New York, 1985).Google Scholar
16. Raineri, V., Fallica, P., Percolla, G., Battaglia, A., Barbagallo, M., and Campisano, S., J. Appl. Phys. 78, 3727 (1995).Google Scholar
17. Hull, R. and Bean, J., Critical Reviews in Solid State and Materials Sciences 17, 507 (1992).Google Scholar
18. Houghton, D., Appl. Phys. Lett., 57, 2124 (1990).Google Scholar
19. Uchida, K., Watanabe, H., Kinoshita, A., Koga, J., Numata, T., Takagi, S., IEDM Tech. Dig. 2002, 47 (2002).Google Scholar
20. Mörschbächer, M. J., da Silva, D.L., Fichtner, P.F.P., Oliviero, E., Behar, M., Zawislak, F.C., Holländer, B., Luysberg, M., Mantl, S., Loo, R., Caymax, M., Nucl. Instrum. Methods Phys. Res. B (2004) -in pressGoogle Scholar