Published online by Cambridge University Press: 28 February 2011
The use of a pulsed UV excimer laser based process for the incorporation of dopant impurities into Si is described. The process can result in high concentration shallow box like profiles suitable for submicron VLSI device fabrication. The process consists of exposure of the clean silicon surface to a doping gas (B2H6, AsH3, PH3) then driving the adsorbed monolayers of dopant into the Si by a melt-regrowth process initiated by a pulsed XeCl excimer laser. Modeling of the process allows prediction of the resulting doping profiles and electrical properties of the doped layers. Excellent crystal quality of the doped layers is found even without a postdoping anneal. Also, recent results indicate that post doping annealing may not be needed for improvement of the electrical characteristics of the doped layers provided certain conditions are met. Detailed descriptions of the process, results, modeling and device fabrication are presented.