Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T17:39:20.480Z Has data issue: false hasContentIssue false

UV Photon-Assisted Refractory Metal Deposition

Published online by Cambridge University Press:  28 February 2011

G. A. Kovall
Affiliation:
Department of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverton, OR 97006-1999
J. C. Matthews
Affiliation:
Fusion Systems Corporation, Rockville, MD 20855
R. Solanki
Affiliation:
Department of Applied Physics and Electrical Engineering, Oregon Graduate Center, Beaverton, OR 97006-1999
Get access

Abstract

We have been investigating deposition of tungsten and molybdenum films at lover temperatures than conventional CVD processes with the aid of ultraviolet photons. The photon source is a high intensity, medium-pressure mercury lamp. W and Mo films have been deposited from their respective hexacarbonyls. W films have also been obtained by photon enhanced reduction of tungsten hexafluoride. In all cases films were deposited over 75 mm diameter substrates, which included quartz, silicon dioxide, and silicon wafers. The deposition system, conditions and the properties of the photodeposited films are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Brown, D. M., Cady, W. R., Sprague, J. W., and Salvagni, P. J., IEEE Trans. Electron Devices ED–18, 931 (1971).Google Scholar
[2] Engeler, W. E. and Brown, D. M., IEEE Trans. Electron Devices ED–19, 54 (1972).CrossRefGoogle Scholar
[3] Shaw, J. M. and Amick, J. A., RCA Review, June 1970, p. 306.Google Scholar
[4] Merchant, P. P., Hewlett-Packard Journal, August 1982, p. 28.Google Scholar
[5] Brors, D. L., Monnig, K. A., Fair, J. A., Coney, W. and Saraswat, K. C., Solid State Technol. 27, 313 (1984).Google Scholar
[6] Cohen, S. S., Kim, M. J., and Brown, D. M., Appl. Phys. Lett. 46, 657 (1985).Google Scholar
[7] Solanki, R., Boyer, P. K., Mahan, J. E., and Collins, G., Appl. Phys. Lett. 38, 572 (1981).CrossRefGoogle Scholar
[8] Ehrlich, D. J., Osgood, R. M. Jr, and Deutsch, T. F., J. Electrochem. Soc. 128, 2040 (1981).Google Scholar
[9] Solanki, R., Boyer, P. K., and Collins, G., Appl. Phys. Lett. 41, 1048 (1982).Google Scholar
[10] Deutsch, T. F. and Rathman, D. D., Appl. Phys. Lett. 45, 623 (1984).Google Scholar
[11] Creighton, J. R., J. Appl. Phys. 59, 410 (1986).Google Scholar
[12] Lundquist, R. T. and Cais, M., J. Organic Chem. 27, 1167 (1962).Google Scholar
[13] Tanner, K. N. and Duncan, A. B. F., J. Am. Chem. Soc. 73, 1164 (1951).Google Scholar
[14] Marosan, C. E. and Soltuz, V., Thin Solid Films 52, 181 (1978).CrossRefGoogle Scholar
[15] Miller, N. E. and Beinglass, I., Solid State Technol. 23, 79 (1980); 25, 85 (1982).Google Scholar
[6] Broadbent, E. K. and Ramiller, C. L., J. Electrochem. Soc. 131, 1427 (1984).Google Scholar
[17] Green, M. L. and Levy, R. A., J. Electrochem. Soc. 132, 1243 (1985).CrossRefGoogle Scholar