Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-14T05:48:09.107Z Has data issue: false hasContentIssue false

X-Ray Photoemission Study of Silicon Nitride-GaAs Interfaces in Relation with GaAs Mesfet Passivation

Published online by Cambridge University Press:  25 February 2011

Patrick Alnot
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE.
J. Olivier
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE.
F. Wyczisk
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE.
J. F. Peray
Affiliation:
LCR THOMSON-CSF Domaine de Corbeville 91401 ORSAY Cedex, FRANCE.
R. Joubart
Affiliation:
DAG THOMSON-SC Domaine de Corbeville 91401 ORSAY Cedex FRANCE.
Get access

Abstract

We have studied the influence of different GaAs surface treatments on the chemical composition and electrical behavior of the Si 3 N4 -GaAs interface, where Si 3 N4 was plasma enhanced chemical vapor deposited (PECVD) onto the treated GaAs(100) substrate. The chemistry of the resulting interface has been studied by X-ray photoelectron spectroscopy (XPS). It has been demonstrated that the chemical composition of the Si 3 N4-GaAs interface is drastically dependent on GaAs surface pretreatment and r.f. plasma excitation frequency. Output-input powers characteristics have been measured on chemically treated planar MESFET after Si3N4. passivation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Wemple, S. H., Niehous, W. C., Fukui, H., Irvin, J. C., Cox, H. M., Hwang, J. C. M., Dilorenzo, J. V. and Schlosser, W. O., IEEE Trans Electron Devices 28, 834 (1981)Google Scholar
2) Capasso, F. and Williams, C.F., J. Electrochem. Soc. 129, 821 (1982)Google Scholar
3) Dumas, J. M., Lecrosnier, D., Paugam, J., Vuchener, C. Electron Lett. 21, 115 (1985)Google Scholar
4) Yamane, Y., Ishui, Y. and Mizutani, T., Japanese Journal of Applied physics 22. 350 (1983)Google Scholar
5) Massies, J. and Contour, J.P., Appl. Phys. Lett. 46, 1150 (1985)Google Scholar
6) Alnot, P. Massies, J. and Contour, J. P. (to be published)Google Scholar
7) Mizokawa, Y., Iwasaki, H., Nishitani, R. and Nakamura, S., J. Electron Spectrosc. Rel. Phenom. 14, 129 (1978)Google Scholar
8) Bruce, R. H., J. Appl. Phys. 52, 7064 (1981)Google Scholar
9) Spicer, W. E., Lindau, I., Pianetta, P., Chye, P. W. and Garner, C. M., Thin Solid films 56, 1 (1979)Google Scholar
10) Thurmond, C. D., Schwartz, G. P., Kammlott, G. W. and Schwartz, B., J. Electrochem. Soc. 127. 1366 (1980)Google Scholar
11) Gourrier, S., Friedel, P. and Larsen, P.K., Surface Science 152/153. 1147 (1985)Google Scholar
12) Hedman, J. and Martensson, N., Physica Scripta 22. 176 (1980)Google Scholar
13) Ladbrooke, P. H., Electronics Letters 17, 339 (1981)Google Scholar
14) Barton, T. M. and Ladbrooke, P.H., IEEE Electron Dev. Lett. 6. 117 (1985)Google Scholar