Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T18:06:53.487Z Has data issue: false hasContentIssue false

ZnO Nanostructured Diodes - Enhancing Energy Generation through Scavenging Vibration

Published online by Cambridge University Press:  18 June 2013

Joe Briscoe
Affiliation:
Centre for Materials Research, School of Engineering and Materials, Queen Mary University of London, E1 4NS, UK.
Nimra Jalali
Affiliation:
Centre for Materials Research, School of Engineering and Materials, Queen Mary University of London, E1 4NS, UK.
Leonard Loh
Affiliation:
School of Engineering, Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore 569830.
Safa Shoaee
Affiliation:
Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
Peter Wooliams
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
Mark Stewart
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
Markys Cain
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
Paul M. Weaver
Affiliation:
National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK
James R. Durrant
Affiliation:
Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London SW7 2AZ, UK.
Steve Dunn
Affiliation:
Centre for Materials Research, School of Engineering and Materials, Queen Mary University of London, E1 4NS, UK.
Get access

Abstract

Recent developments on the use of the piezoelectric effect in ZnO nanorod-based p-n junctions for energy harvesting applications are presented. Two types of junctions are used. The first is a hybrid p-n device combining the semiconducting polymer poly(3,4-ethylene-dioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) with ZnO nanorods. The second type of junction is an all-inorganic junction between n-type ZnO nanorods and p-type CuSCN. It is shown that both these diodes can be produced on flexible plastic substrates, which generate a voltage output when bent. The voltage output of the ZnO/PEDOT:PSS diodes are measured across a range of resistive loads while bending to find a maximum power point of 12 μWcm-2 at 4 kΩ. It is shown that a voltage output is also generated when this structure is vibrated acoustically. The ZnO/CuSCN diode is sensitized to sunlight with a Ru-based dye to form a photovoltaic device. It is shown that the device efficiency can be increased by application of acoustic vibrations. This is attributed to the electric field generated by the piezoelectric effect in ZnO affecting the charge-carrier recombination at the ZnO surface.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schmidt-Mende, L., MacManus-Driscoll, J.L., Materials Today 10 (2007) 40.CrossRefGoogle Scholar
Könenkamp, R., Word, R.C., Godinez, M., Nano Letters 5 (2005) 2005.CrossRefGoogle Scholar
Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., Yang, P., Nano Letters 5 (2005) 1231.CrossRefGoogle Scholar
Ravirajan, P., Peiró, A.M., Nazeeruddin, M.K., Graetzel, M., Bradley, D.D.C., Durrant, J.R., Nelson, J., The Journal of Physical Chemistry B 110 (2006) 7635.CrossRefGoogle Scholar
Peiro, A.M., Ravirajan, P., Govender, K., Boyle, D.S., O’Brien, P., Bradley, D.D.C., Nelson, J., Durrant, J.R., Journal of Materials Chemistry 16 (2006) 2088.CrossRefGoogle Scholar
Baeten, L., Conings, B., Boyen, H.-G., D’Haen, J., Hardy, A., D’Olieslaeger, M., Manca, J. V, Van Bael, M.K., Advanced Materials 23 (2011) 2802.CrossRefGoogle Scholar
Jaffe, B., Cook, J.M., Jaffe, H., Piezoelectric Ceramics, Academic Press, London and New York, 1971.Google Scholar
Choi, M.-Y., Choi, D., Jin, M.-J., Kim, I., Kim, S.-H., Choi, J.-Y., Lee, S.Y., Kim, J.M., Kim, S.-W., Advanced Materials 21 (2009) 2185.CrossRefGoogle Scholar
Hu, Y., Zhang, Y., Xu, C., Lin, L., Snyder, R.L., Wang, Z.L., Nano Letters 11 (2011) 2572.CrossRefGoogle Scholar
Briscoe, J., Stewart, M., Vopson, M., Cain, M., Weaver, P.M., Dunn, S., Adv. Energy Mater. 2 (2012) 1261.CrossRefGoogle Scholar
Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., Proceedings of the IEEE 96 (2008) 1457.CrossRefGoogle Scholar
D.S. and J.-H.P. and J.A. and S.-Y.C. and H.C.W.I.I.I. and Kim, D.-J. , Journal of Micromechanics and Microengineering 18 (2008) 55017.Google Scholar
Briscoe, J., Stewart, M., Vopson, M., Cain, M., Weaver, P.M., Dunn, S., Mater. Res. Soc. Symp. Proc. 1439 (2012) 151.CrossRefGoogle Scholar
Xu, C., Wang, X., Wang, Z.L., Journal of the American Chemical Society 131 (2009) 5866.CrossRefGoogle Scholar
Xu, C., Wang, Z.L., Advanced Materials 23 (2011) 873.CrossRefGoogle Scholar
Choi, D., Lee, K.Y., Jin, M.-J., Ihn, S.-G., Yun, S., Bulliard, X., Choi, W., Lee, S.Y., Kim, S.-W., Choi, J.-Y., Kim, J.M., Wang, Z.L., Energy Environ. Sci. 4 (2011) 4607.CrossRefGoogle Scholar
Vayssieres, L., Advanced Materials 15 (2003) 464.CrossRefGoogle Scholar
Hatch, S.M., Briscoe, J., Dunn, S., Thin Solid Films 531 (2013) 404.CrossRefGoogle Scholar
Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P., Nature Materials 4 (2005) 455.CrossRefGoogle Scholar
Xu, C., Wu, J., V Desai, U., Gao, D., Journal of the American Chemical Society 133 (2011) 8122.CrossRefGoogle Scholar
Yuan, Y., Reece, T.J., Sharma, P., Poddar, S., Ducharme, S., Gruverman, A., Yang, Y., Huang, J., Nat. Mater. 10 (2011) 296.CrossRefGoogle Scholar